
2-categorical Descent and (Essentially) Algebraic
Theories

Chris Grossack
(they/them)

UC Riverside

October 28, 2023



Definition
An Algebraic Theory is specified by

• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations

∥

Examples:
• Groups
• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations

∥

Examples:
• Groups
• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations

∥

Examples:
• Groups
• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:
• Groups
• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups
• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:
• Groups

• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups

• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!

• A set G

• Operations

• m : G × G → G
• i : G → G
• e : 1 → G

• Axioms

• m(m(x , y), z) = m(x ,m(y , z))
• m(x , e) = x = m(e, x)
• m(x , i(x)) = e = m(i(x), x)



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups

• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!

• A set G
• Operations

• m : G × G → G
• i : G → G
• e : 1 → G

• Axioms

• m(m(x , y), z) = m(x ,m(y , z))
• m(x , e) = x = m(e, x)
• m(x , i(x)) = e = m(i(x), x)



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups

• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!

• A set G
• Operations

• m : G × G → G

• i : G → G
• e : 1 → G

• Axioms

• m(m(x , y), z) = m(x ,m(y , z))
• m(x , e) = x = m(e, x)
• m(x , i(x)) = e = m(i(x), x)



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups

• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!

• A set G
• Operations

• m : G × G → G
• i : G → G

• e : 1 → G
• Axioms

• m(m(x , y), z) = m(x ,m(y , z))
• m(x , e) = x = m(e, x)
• m(x , i(x)) = e = m(i(x), x)



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups

• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!

• A set G
• Operations

• m : G × G → G
• i : G → G
• e : 1 → G

• Axioms

• m(m(x , y), z) = m(x ,m(y , z))
• m(x , e) = x = m(e, x)
• m(x , i(x)) = e = m(i(x), x)



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups

• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!

• A set G
• Operations

• m : G × G → G
• i : G → G
• e : 1 → G

• Axioms

• m(m(x , y), z) = m(x ,m(y , z))
• m(x , e) = x = m(e, x)
• m(x , i(x)) = e = m(i(x), x)



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups

• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!

• A set G
• Operations

• m : G × G → G
• i : G → G
• e : 1 → G

• Axioms
• m(m(x , y), z) = m(x ,m(y , z))

• m(x , e) = x = m(e, x)
• m(x , i(x)) = e = m(i(x), x)



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups

• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!

• A set G
• Operations

• m : G × G → G
• i : G → G
• e : 1 → G

• Axioms
• m(m(x , y), z) = m(x ,m(y , z))
• m(x , e) = x = m(e, x)

• m(x , i(x)) = e = m(i(x), x)



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups

• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!

• A set G
• Operations

• m : G × G → G
• i : G → G
• e : 1 → G

• Axioms
• m(m(x , y), z) = m(x ,m(y , z))
• m(x , e) = x = m(e, x)
• m(x , i(x)) = e = m(i(x), x)



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:
• Groups
• Rings

• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:
• Groups
• Rings
• Modules

• Ring/Module
Pairs

• Unfortunately,
Not Categories!



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:
• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

• Sets R and M

• Operations

• +R ,×R : R × R → R and −R : R → R
• 0R , 1R : 1 → R
• +M : M ×M → M and −M : M → M
• 0M : 1 → M
• · : R ×M → M

• Axioms

• The usual ring axioms for R
• The usual abelian group axioms for M
• (r1 ×R r2) ·m = r1 · (r2 ·m)
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

• Sets R and M
• Operations

• +R ,×R : R × R → R and −R : R → R
• 0R , 1R : 1 → R
• +M : M ×M → M and −M : M → M
• 0M : 1 → M
• · : R ×M → M

• Axioms

• The usual ring axioms for R
• The usual abelian group axioms for M
• (r1 ×R r2) ·m = r1 · (r2 ·m)
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

• Sets R and M
• Operations

• +R ,×R : R × R → R and −R : R → R

• 0R , 1R : 1 → R
• +M : M ×M → M and −M : M → M
• 0M : 1 → M
• · : R ×M → M

• Axioms

• The usual ring axioms for R
• The usual abelian group axioms for M
• (r1 ×R r2) ·m = r1 · (r2 ·m)
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

• Sets R and M
• Operations

• +R ,×R : R × R → R and −R : R → R
• 0R , 1R : 1 → R

• +M : M ×M → M and −M : M → M
• 0M : 1 → M
• · : R ×M → M

• Axioms

• The usual ring axioms for R
• The usual abelian group axioms for M
• (r1 ×R r2) ·m = r1 · (r2 ·m)
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

• Sets R and M
• Operations

• +R ,×R : R × R → R and −R : R → R
• 0R , 1R : 1 → R
• +M : M ×M → M and −M : M → M

• 0M : 1 → M
• · : R ×M → M

• Axioms

• The usual ring axioms for R
• The usual abelian group axioms for M
• (r1 ×R r2) ·m = r1 · (r2 ·m)
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

• Sets R and M
• Operations

• +R ,×R : R × R → R and −R : R → R
• 0R , 1R : 1 → R
• +M : M ×M → M and −M : M → M
• 0M : 1 → M

• · : R ×M → M
• Axioms

• The usual ring axioms for R
• The usual abelian group axioms for M
• (r1 ×R r2) ·m = r1 · (r2 ·m)
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

• Sets R and M
• Operations

• +R ,×R : R × R → R and −R : R → R
• 0R , 1R : 1 → R
• +M : M ×M → M and −M : M → M
• 0M : 1 → M
• · : R ×M → M

• Axioms

• The usual ring axioms for R
• The usual abelian group axioms for M
• (r1 ×R r2) ·m = r1 · (r2 ·m)
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

• Sets R and M
• Operations

• +R ,×R : R × R → R and −R : R → R
• 0R , 1R : 1 → R
• +M : M ×M → M and −M : M → M
• 0M : 1 → M
• · : R ×M → M

• Axioms

• The usual ring axioms for R
• The usual abelian group axioms for M
• (r1 ×R r2) ·m = r1 · (r2 ·m)
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

• Sets R and M
• Operations

• +R ,×R : R × R → R and −R : R → R
• 0R , 1R : 1 → R
• +M : M ×M → M and −M : M → M
• 0M : 1 → M
• · : R ×M → M

• Axioms
• The usual ring axioms for R

• The usual abelian group axioms for M
• (r1 ×R r2) ·m = r1 · (r2 ·m)
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

• Sets R and M
• Operations

• +R ,×R : R × R → R and −R : R → R
• 0R , 1R : 1 → R
• +M : M ×M → M and −M : M → M
• 0M : 1 → M
• · : R ×M → M

• Axioms
• The usual ring axioms for R
• The usual abelian group axioms for M

• (r1 ×R r2) ·m = r1 · (r2 ·m)
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

• Sets R and M
• Operations

• +R ,×R : R × R → R and −R : R → R
• 0R , 1R : 1 → R
• +M : M ×M → M and −M : M → M
• 0M : 1 → M
• · : R ×M → M

• Axioms
• The usual ring axioms for R
• The usual abelian group axioms for M
• (r1 ×R r2) ·m = r1 · (r2 ·m)

• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:

• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

• Sets R and M
• Operations

• +R ,×R : R × R → R and −R : R → R
• 0R , 1R : 1 → R
• +M : M ×M → M and −M : M → M
• 0M : 1 → M
• · : R ×M → M

• Axioms
• The usual ring axioms for R
• The usual abelian group axioms for M
• (r1 ×R r2) ·m = r1 · (r2 ·m)
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:
• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

Algebraic theories have many nice properties

• free models exist
• (co)limits of existing models exist
• (so we have presentations by generators and

relations)
• homomorphism theorems work
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:
• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

Algebraic theories have many nice properties
• free models exist

• (co)limits of existing models exist
• (so we have presentations by generators and

relations)
• homomorphism theorems work
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:
• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

Algebraic theories have many nice properties
• free models exist
• (co)limits of existing models exist

• (so we have presentations by generators and
relations)

• homomorphism theorems work
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:
• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

Algebraic theories have many nice properties
• free models exist
• (co)limits of existing models exist
• (so we have presentations by generators and

relations)

• homomorphism theorems work
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:
• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

Algebraic theories have many nice properties
• free models exist
• (co)limits of existing models exist
• (so we have presentations by generators and

relations)
• homomorphism theorems work

• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:
• Groups
• Rings
• Modules
• Ring/Module

Pairs

• Unfortunately,
Not Categories!

Algebraic theories have many nice properties
• free models exist
• (co)limits of existing models exist
• (so we have presentations by generators and

relations)
• homomorphism theorems work
• etc.



Definition
An Algebraic Theory is specified by
• Some sets Ai

• Some operations from (products of) the Ai to some Aj

• Some equations we require of the operations
∥

Examples:
• Groups
• Rings
• Modules
• Ring/Module

Pairs
• Unfortunately,

Not Categories!

Algebraic theories have many nice properties
• free models exist
• (co)limits of existing models exist
• (so we have presentations by generators and

relations)
• homomorphism theorems work
• etc.



A (strict) Category has
• Sets Ob and Arr

• Operations

• dom :

Arr → Ob

• cod :

Arr → Ob

• id :

Ob → Arr

• ◦ :

Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr
but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



A (strict) Category has
• Sets Ob and Arr
• Operations

• dom :

Arr → Ob

• cod :

Arr → Ob

• id :

Ob → Arr

• ◦ :

Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr
but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



A (strict) Category has
• Sets Ob and Arr
• Operations

• dom :

Arr → Ob
• cod :

Arr → Ob

• id :

Ob → Arr

• ◦ :

Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr
but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



A (strict) Category has
• Sets Ob and Arr
• Operations

• dom : Arr → Ob

• cod :

Arr → Ob

• id :

Ob → Arr

• ◦ :

Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr
but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



A (strict) Category has
• Sets Ob and Arr
• Operations

• dom : Arr → Ob
• cod :

Arr → Ob
• id :

Ob → Arr

• ◦ :

Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr
but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



A (strict) Category has
• Sets Ob and Arr
• Operations

• dom : Arr → Ob
• cod : Arr → Ob

• id :

Ob → Arr

• ◦ :

Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr
but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



A (strict) Category has
• Sets Ob and Arr
• Operations

• dom : Arr → Ob
• cod : Arr → Ob
• id :

Ob → Arr
• ◦ :

Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr
but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



A (strict) Category has
• Sets Ob and Arr
• Operations

• dom : Arr → Ob
• cod : Arr → Ob
• id : Ob → Arr

• ◦ :

Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr
but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



A (strict) Category has
• Sets Ob and Arr
• Operations

• dom : Arr → Ob
• cod : Arr → Ob
• id : Ob → Arr
• ◦ :

Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr
but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



A (strict) Category has
• Sets Ob and Arr
• Operations

• dom : Arr → Ob
• cod : Arr → Ob
• id : Ob → Arr
• ◦ : Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr
but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



A (strict) Category has
• Sets Ob and Arr
• Operations

• dom : Arr → Ob
• cod : Arr → Ob
• id : Ob → Arr
• ◦ : Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr

but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



A (strict) Category has
• Sets Ob and Arr
• Operations

• dom : Arr → Ob
• cod : Arr → Ob
• id : Ob → Arr
• ◦ : Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr
but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



A (strict) Category has
• Sets Ob and Arr
• Operations

• dom : Arr → Ob
• cod : Arr → Ob
• id : Ob → Arr
• ◦ : Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr
but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



A (strict) Category has
• Sets Ob and Arr
• Operations

• dom : Arr → Ob
• cod : Arr → Ob
• id : Ob → Arr
• ◦ : Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr
but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



A (strict) Category has
• Sets Ob and Arr
• Operations

• dom : Arr → Ob
• cod : Arr → Ob
• id : Ob → Arr
• ◦ : Uh Oh!

It’s kind of true that
◦ : Arr × Arr → Arr
but f ◦ g only makes sense if
dom(f ) = cod(g)!

Composition is only partially defined!

Of course, we would still like to have
all those nice properties for
categories (and other gadgets more
general than algebraic theories)

Whatever are we to do!?



Definition
An Essentially Algebraic Theory is specified by

• Some sets Ai

• Some total operations from (products of) the Ai to some Aj

• Some partial operations from “nice” subsets of products of the Ai to
some Aj

• Some equations we require of the operations

∥

By “nice” we mean that the domain of a partial operation should be
specified by some equations in the total operations

For example, the domain of ◦ is

{
(f , g) ∈ A× A | dom(f ) = cod(g)

}
which is defined by some equations in the total operations.



Definition
An Essentially Algebraic Theory is specified by
• Some sets Ai

• Some total operations from (products of) the Ai to some Aj

• Some partial operations from “nice” subsets of products of the Ai to
some Aj

• Some equations we require of the operations

∥

By “nice” we mean that the domain of a partial operation should be
specified by some equations in the total operations

For example, the domain of ◦ is

{
(f , g) ∈ A× A | dom(f ) = cod(g)

}
which is defined by some equations in the total operations.



Definition
An Essentially Algebraic Theory is specified by
• Some sets Ai

• Some total operations from (products of) the Ai to some Aj

• Some partial operations from “nice” subsets of products of the Ai to
some Aj

• Some equations we require of the operations

∥

By “nice” we mean that the domain of a partial operation should be
specified by some equations in the total operations

For example, the domain of ◦ is

{
(f , g) ∈ A× A | dom(f ) = cod(g)

}
which is defined by some equations in the total operations.



Definition
An Essentially Algebraic Theory is specified by
• Some sets Ai

• Some total operations from (products of) the Ai to some Aj

• Some partial operations from “nice” subsets of products of the Ai to
some Aj

• Some equations we require of the operations

∥

By “nice” we mean that the domain of a partial operation should be
specified by some equations in the total operations

For example, the domain of ◦ is

{
(f , g) ∈ A× A | dom(f ) = cod(g)

}
which is defined by some equations in the total operations.



Definition
An Essentially Algebraic Theory is specified by
• Some sets Ai

• Some total operations from (products of) the Ai to some Aj

• Some partial operations from “nice” subsets of products of the Ai to
some Aj

• Some equations we require of the operations
∥

By “nice” we mean that the domain of a partial operation should be
specified by some equations in the total operations

For example, the domain of ◦ is

{
(f , g) ∈ A× A | dom(f ) = cod(g)

}
which is defined by some equations in the total operations.



Definition
An Essentially Algebraic Theory is specified by
• Some sets Ai

• Some total operations from (products of) the Ai to some Aj

• Some partial operations from “nice” subsets of products of the Ai to
some Aj

• Some equations we require of the operations
∥

By “nice” we mean that the domain of a partial operation should be
specified by some equations in the total operations

For example, the domain of ◦ is

{
(f , g) ∈ A× A | dom(f ) = cod(g)

}
which is defined by some equations in the total operations.



Definition
An Essentially Algebraic Theory is specified by
• Some sets Ai

• Some total operations from (products of) the Ai to some Aj

• Some partial operations from “nice” subsets of products of the Ai to
some Aj

• Some equations we require of the operations
∥

By “nice” we mean that the domain of a partial operation should be
specified by some equations in the total operations

For example, the domain of ◦ is

{
(f , g) ∈ A× A | dom(f ) = cod(g)

}
which is defined by some equations in the total operations.



In fact essentially algebraic theories are even more useful than they
initially look!

It’s a (nonobvious) fact that every horn theory is essentially algebraic.

In particular, this gives examples like

• Posets: (x ≤ y) ∧ (y ≤ z) → (x ≤ z)

• Cancellable Monoids: ax = bx → a = b

• Torsion-free Abelian Groups: x + · · ·+ x︸ ︷︷ ︸
n times

= 0 → x = 0

• etc.

So anything we can say about essentially algebraic theories (free models,
(co)limits, etc.) will immediately give us theorems for a huge class of
objects that working mathematicians care about!

Which is why it’s good that. . .



In fact essentially algebraic theories are even more useful than they
initially look!

It’s a (nonobvious) fact that every horn theory is essentially algebraic.

In particular, this gives examples like

• Posets: (x ≤ y) ∧ (y ≤ z) → (x ≤ z)

• Cancellable Monoids: ax = bx → a = b

• Torsion-free Abelian Groups: x + · · ·+ x︸ ︷︷ ︸
n times

= 0 → x = 0

• etc.

So anything we can say about essentially algebraic theories (free models,
(co)limits, etc.) will immediately give us theorems for a huge class of
objects that working mathematicians care about!

Which is why it’s good that. . .



In fact essentially algebraic theories are even more useful than they
initially look!

It’s a (nonobvious) fact that every horn theory is essentially algebraic.

In particular, this gives examples like

• Posets: (x ≤ y) ∧ (y ≤ z) → (x ≤ z)

• Cancellable Monoids: ax = bx → a = b

• Torsion-free Abelian Groups: x + · · ·+ x︸ ︷︷ ︸
n times

= 0 → x = 0

• etc.

So anything we can say about essentially algebraic theories (free models,
(co)limits, etc.) will immediately give us theorems for a huge class of
objects that working mathematicians care about!

Which is why it’s good that. . .



In fact essentially algebraic theories are even more useful than they
initially look!

It’s a (nonobvious) fact that every horn theory is essentially algebraic.

In particular, this gives examples like

• Posets: (x ≤ y) ∧ (y ≤ z) → (x ≤ z)

• Cancellable Monoids: ax = bx → a = b

• Torsion-free Abelian Groups: x + · · ·+ x︸ ︷︷ ︸
n times

= 0 → x = 0

• etc.

So anything we can say about essentially algebraic theories (free models,
(co)limits, etc.) will immediately give us theorems for a huge class of
objects that working mathematicians care about!

Which is why it’s good that. . .



In fact essentially algebraic theories are even more useful than they
initially look!

It’s a (nonobvious) fact that every horn theory is essentially algebraic.

In particular, this gives examples like

• Posets: (x ≤ y) ∧ (y ≤ z) → (x ≤ z)

• Cancellable Monoids: ax = bx → a = b

• Torsion-free Abelian Groups: x + · · ·+ x︸ ︷︷ ︸
n times

= 0 → x = 0

• etc.

So anything we can say about essentially algebraic theories (free models,
(co)limits, etc.) will immediately give us theorems for a huge class of
objects that working mathematicians care about!

Which is why it’s good that. . .



In fact essentially algebraic theories are even more useful than they
initially look!

It’s a (nonobvious) fact that every horn theory is essentially algebraic.

In particular, this gives examples like

• Posets: (x ≤ y) ∧ (y ≤ z) → (x ≤ z)

• Cancellable Monoids: ax = bx → a = b

• Torsion-free Abelian Groups: x + · · ·+ x︸ ︷︷ ︸
n times

= 0 → x = 0

• etc.

So anything we can say about essentially algebraic theories (free models,
(co)limits, etc.) will immediately give us theorems for a huge class of
objects that working mathematicians care about!

Which is why it’s good that. . .



In fact essentially algebraic theories are even more useful than they
initially look!

It’s a (nonobvious) fact that every horn theory is essentially algebraic.

In particular, this gives examples like

• Posets: (x ≤ y) ∧ (y ≤ z) → (x ≤ z)

• Cancellable Monoids: ax = bx → a = b

• Torsion-free Abelian Groups: x + · · ·+ x︸ ︷︷ ︸
n times

= 0 → x = 0

• etc.

So anything we can say about essentially algebraic theories (free models,
(co)limits, etc.) will immediately give us theorems for a huge class of
objects that working mathematicians care about!

Which is why it’s good that. . .



In fact essentially algebraic theories are even more useful than they
initially look!

It’s a (nonobvious) fact that every horn theory is essentially algebraic.

In particular, this gives examples like

• Posets: (x ≤ y) ∧ (y ≤ z) → (x ≤ z)

• Cancellable Monoids: ax = bx → a = b

• Torsion-free Abelian Groups: x + · · ·+ x︸ ︷︷ ︸
n times

= 0 → x = 0

• etc.

So anything we can say about essentially algebraic theories (free models,
(co)limits, etc.) will immediately give us theorems for a huge class of
objects that working mathematicians care about!

Which is why it’s good that. . .



Theorem
For essentially algebraic theories, we have

• (co)limits of models
• free models
• (in particular, presentations)
• etc.

Unfortunately, they’re not quite as nice as algebraic theories. . .



Theorem
For essentially algebraic theories, we have
• (co)limits of models

• free models
• (in particular, presentations)
• etc.

Unfortunately, they’re not quite as nice as algebraic theories. . .



Theorem
For essentially algebraic theories, we have
• (co)limits of models
• free models

• (in particular, presentations)
• etc.

Unfortunately, they’re not quite as nice as algebraic theories. . .



Theorem
For essentially algebraic theories, we have
• (co)limits of models
• free models
• (in particular, presentations)

• etc.

Unfortunately, they’re not quite as nice as algebraic theories. . .



Theorem
For essentially algebraic theories, we have
• (co)limits of models
• free models
• (in particular, presentations)
• etc.

Unfortunately, they’re not quite as nice as algebraic theories. . .



Theorem
For essentially algebraic theories, we have
• (co)limits of models
• free models
• (in particular, presentations)
• etc.

Unfortunately, they’re not quite as nice as algebraic theories. . .



There are lots of subtle ways this is true, but here’s a very concrete
example:

For algebraic theories, the underlying set of a quotient is a quotient of
the underlying set

eg, the underlying set of the group G
/
N is a quotient of the underlying

set of G (under the relation g ∼ h ⇐⇒ gh−1 ∈ N).

This does not need to be true for models of essentially algebraic theories!



There are lots of subtle ways this is true, but here’s a very concrete
example:

For algebraic theories, the underlying set of a quotient is a quotient of
the underlying set

eg, the underlying set of the group G
/
N is a quotient of the underlying

set of G (under the relation g ∼ h ⇐⇒ gh−1 ∈ N).

This does not need to be true for models of essentially algebraic theories!



There are lots of subtle ways this is true, but here’s a very concrete
example:

For algebraic theories, the underlying set of a quotient is a quotient of
the underlying set

eg, the underlying set of the group G
/
N is a quotient of the underlying

set of G (under the relation g ∼ h ⇐⇒ gh−1 ∈ N).

This does not need to be true for models of essentially algebraic theories!



There are lots of subtle ways this is true, but here’s a very concrete
example:

For algebraic theories, the underlying set of a quotient is a quotient of
the underlying set

eg, the underlying set of the group G
/
N is a quotient of the underlying

set of G (under the relation g ∼ h ⇐⇒ gh−1 ∈ N).

This does not need to be true for models of essentially algebraic theories!



For Example:

X Y1 Y2 Zf g

Let’s quotient to make Y1 = Y2

After quotienting the objects, our partial operation ◦ sees that f and g
are composable! So we must add an arrow g ◦ f

But this means, in the quotient, our set of arrows is {f , g , g ◦ f }, which
is not a quotient of our original set of arrows {f , g}!



For Example:

X Y1 Y2 Zf g

Let’s quotient to make Y1 = Y2

After quotienting the objects, our partial operation ◦ sees that f and g
are composable! So we must add an arrow g ◦ f

But this means, in the quotient, our set of arrows is {f , g , g ◦ f }, which
is not a quotient of our original set of arrows {f , g}!



For Example:

X Y1 Y2 Zf g

Let’s quotient to make Y1 = Y2

After quotienting the objects, our partial operation ◦ sees that f and g
are composable! So we must add an arrow g ◦ f

But this means, in the quotient, our set of arrows is {f , g , g ◦ f }, which
is not a quotient of our original set of arrows {f , g}!



For Example:

X Y1 Y2 Zf g

Let’s quotient to make Y1 = Y2

X Y Zf g

After quotienting the objects, our partial operation ◦ sees that f and g
are composable! So we must add an arrow g ◦ f

But this means, in the quotient, our set of arrows is {f , g , g ◦ f }, which
is not a quotient of our original set of arrows {f , g}!



For Example:

X Y1 Y2 Zf g

Let’s quotient to make Y1 = Y2

X Y Zf g

After quotienting the objects, our partial operation ◦ sees that f and g
are composable! So we must add an arrow g ◦ f

But this means, in the quotient, our set of arrows is {f , g , g ◦ f }, which
is not a quotient of our original set of arrows {f , g}!



For Example:

X Y1 Y2 Zf g

Let’s quotient to make Y1 = Y2

X Y Zf g

g◦f

After quotienting the objects, our partial operation ◦ sees that f and g
are composable! So we must add an arrow g ◦ f

But this means, in the quotient, our set of arrows is {f , g , g ◦ f }, which
is not a quotient of our original set of arrows {f , g}!



For Example:

X Y1 Y2 Zf g

Let’s quotient to make Y1 = Y2

X Y Zf g

g◦f

After quotienting the objects, our partial operation ◦ sees that f and g
are composable! So we must add an arrow g ◦ f

But this means, in the quotient, our set of arrows is {f , g , g ◦ f }, which
is not a quotient of our original set of arrows {f , g}!



Moreover, algebraic theories admit models in any category with finite
products

eg. topological groups, lie groups, algebraic groups, etc. are “just” group
objects in their respective categories.

But essentially algebraic theories only admit models in a category with
finite limits. (that is, we need equalizers too!) This is annoying if we
want to interpret “smooth” versions of our algebras, since Diff famously
lacks finite limits!

For instance, this is why a lie groupoid is not simply a groupoid object in
Diff. Groupoids, special categories, are merely essentially algebraic!



Moreover, algebraic theories admit models in any category with finite
products

eg. topological groups,

lie groups, algebraic groups, etc. are “just” group
objects in their respective categories.

But essentially algebraic theories only admit models in a category with
finite limits. (that is, we need equalizers too!) This is annoying if we
want to interpret “smooth” versions of our algebras, since Diff famously
lacks finite limits!

For instance, this is why a lie groupoid is not simply a groupoid object in
Diff. Groupoids, special categories, are merely essentially algebraic!



Moreover, algebraic theories admit models in any category with finite
products

eg. topological groups, lie groups,

algebraic groups, etc. are “just” group
objects in their respective categories.

But essentially algebraic theories only admit models in a category with
finite limits. (that is, we need equalizers too!) This is annoying if we
want to interpret “smooth” versions of our algebras, since Diff famously
lacks finite limits!

For instance, this is why a lie groupoid is not simply a groupoid object in
Diff. Groupoids, special categories, are merely essentially algebraic!



Moreover, algebraic theories admit models in any category with finite
products

eg. topological groups, lie groups, algebraic groups,

etc. are “just” group
objects in their respective categories.

But essentially algebraic theories only admit models in a category with
finite limits. (that is, we need equalizers too!) This is annoying if we
want to interpret “smooth” versions of our algebras, since Diff famously
lacks finite limits!

For instance, this is why a lie groupoid is not simply a groupoid object in
Diff. Groupoids, special categories, are merely essentially algebraic!



Moreover, algebraic theories admit models in any category with finite
products

eg. topological groups, lie groups, algebraic groups, etc.

are “just” group
objects in their respective categories.

But essentially algebraic theories only admit models in a category with
finite limits. (that is, we need equalizers too!) This is annoying if we
want to interpret “smooth” versions of our algebras, since Diff famously
lacks finite limits!

For instance, this is why a lie groupoid is not simply a groupoid object in
Diff. Groupoids, special categories, are merely essentially algebraic!



Moreover, algebraic theories admit models in any category with finite
products

eg. topological groups, lie groups, algebraic groups, etc. are “just” group
objects in their respective categories.

But essentially algebraic theories only admit models in a category with
finite limits. (that is, we need equalizers too!) This is annoying if we
want to interpret “smooth” versions of our algebras, since Diff famously
lacks finite limits!

For instance, this is why a lie groupoid is not simply a groupoid object in
Diff. Groupoids, special categories, are merely essentially algebraic!



Moreover, algebraic theories admit models in any category with finite
products

eg. topological groups, lie groups, algebraic groups, etc. are “just” group
objects in their respective categories.

But essentially algebraic theories only admit models in a category with
finite limits.

(that is, we need equalizers too!) This is annoying if we
want to interpret “smooth” versions of our algebras, since Diff famously
lacks finite limits!

For instance, this is why a lie groupoid is not simply a groupoid object in
Diff. Groupoids, special categories, are merely essentially algebraic!



Moreover, algebraic theories admit models in any category with finite
products

eg. topological groups, lie groups, algebraic groups, etc. are “just” group
objects in their respective categories.

But essentially algebraic theories only admit models in a category with
finite limits. (that is, we need equalizers too!)

This is annoying if we
want to interpret “smooth” versions of our algebras, since Diff famously
lacks finite limits!

For instance, this is why a lie groupoid is not simply a groupoid object in
Diff. Groupoids, special categories, are merely essentially algebraic!



Moreover, algebraic theories admit models in any category with finite
products

eg. topological groups, lie groups, algebraic groups, etc. are “just” group
objects in their respective categories.

But essentially algebraic theories only admit models in a category with
finite limits. (that is, we need equalizers too!) This is annoying if we
want to interpret “smooth” versions of our algebras, since Diff famously
lacks finite limits!

For instance, this is why a lie groupoid is not simply a groupoid object in
Diff. Groupoids, special categories, are merely essentially algebraic!



Moreover, algebraic theories admit models in any category with finite
products

eg. topological groups, lie groups, algebraic groups, etc. are “just” group
objects in their respective categories.

But essentially algebraic theories only admit models in a category with
finite limits. (that is, we need equalizers too!) This is annoying if we
want to interpret “smooth” versions of our algebras, since Diff famously
lacks finite limits!

For instance, this is why a lie groupoid is not simply a groupoid object in
Diff. Groupoids, special categories, are merely essentially algebraic!



Since algebraic theories are better behaved, we find ourselves with a
natural question:

Given an essentially algebraic theory in the wild, is
there a way to check whether it’s secretly algebraic?

Theorem (Pedicchio-Wood ’99, independently G.)

Yes!

Both proofs are basically the same, and crucially use quite a lot of
category theory!



Since algebraic theories are better behaved, we find ourselves with a
natural question:

Given an essentially algebraic theory in the wild, is
there a way to check whether it’s secretly algebraic?

Theorem (Pedicchio-Wood ’99, independently G.)

Yes!

Both proofs are basically the same, and crucially use quite a lot of
category theory!



Since algebraic theories are better behaved, we find ourselves with a
natural question:

Given an essentially algebraic theory in the wild, is
there a way to check whether it’s secretly algebraic?

Theorem (Pedicchio-Wood ’99, independently G.)

Yes!

Both proofs are basically the same, and crucially use quite a lot of
category theory!



Since algebraic theories are better behaved, we find ourselves with a
natural question:

Given an essentially algebraic theory in the wild, is
there a way to check whether it’s secretly algebraic?

Theorem (Pedicchio-Wood ’99, independently G.)

Yes!

Both proofs are basically the same, and crucially use quite a lot of
category theory!



Since algebraic theories are better behaved, we find ourselves with a
natural question:

Given an essentially algebraic theory in the wild, is
there a way to check whether it’s secretly algebraic?

Theorem (Pedicchio-Wood ’99, independently G.)

Yes!

Both proofs are basically the same, and crucially use quite a lot of
category theory!



Next we recall Functorial Semantics:

Following Lawvere, algebraic theories are finite product categories! We
identify a theory with T – (the opposite of) its category of finitely
generated free algebras, and an algebra becomes a finte product
preserving functor from T to Set!

(more generally, a T-algebra in a finite product category C is a finite
product preserving functor T → C)



Next we recall Functorial Semantics:

Following Lawvere, algebraic theories are finite product categories!

We
identify a theory with T – (the opposite of) its category of finitely
generated free algebras, and an algebra becomes a finte product
preserving functor from T to Set!

(more generally, a T-algebra in a finite product category C is a finite
product preserving functor T → C)



Next we recall Functorial Semantics:

Following Lawvere, algebraic theories are finite product categories! We
identify a theory with T – (the opposite of) its category of finitely
generated free algebras,

and an algebra becomes a finte product
preserving functor from T to Set!

(more generally, a T-algebra in a finite product category C is a finite
product preserving functor T → C)



Next we recall Functorial Semantics:

Following Lawvere, algebraic theories are finite product categories! We
identify a theory with T – (the opposite of) its category of finitely
generated free algebras, and an algebra becomes a finte product
preserving functor from T to Set!

(more generally, a T-algebra in a finite product category C is a finite
product preserving functor T → C)



Next we recall Functorial Semantics:

Following Lawvere, algebraic theories are finite product categories! We
identify a theory with T – (the opposite of) its category of finitely
generated free algebras, and an algebra becomes a finte product
preserving functor from T to Set!

(more generally, a T-algebra in a finite product category C is a finite
product preserving functor T → C)



Let’s look at groups, for example:



Let’s look at groups, for example:

⟨⟩ ⟨x⟩ ⟨a, b⟩ · · ·



Let’s look at groups, for example:

⟨⟩ ⟨x⟩ ⟨a, b⟩ · · ·

⟨x⟩

! ab

x−1



Let’s look at groups, for example:

⟨⟩ ⟨x⟩ ⟨a, b⟩ · · ·

⟨x⟩

! ab

x−1



Let’s look at groups, for example:

⟨⟩ ⟨x⟩ ⟨a, b⟩ · · ·

⟨x⟩

! ab

x−1

⇝

⟨x⟩ 7→ G

G 0 G 1 G 2 · · ·

G 1

! ab

x−1



Let’s look at groups, for example:

⟨⟩ ⟨x⟩ ⟨a, b⟩ · · ·

⟨x⟩

! ab

x−1

⇝

⟨x⟩ 7→ G

G 0 G 1 G 2 · · ·

G 1

e m

i



Following Gabriel-Ulmer, essentially algebraic theories are finite limit
categories!

We identify a theory with T – (the opposite of) its category of finitely
presented algebras, and an algebra becomes a finite limit preserving
functor from T to Set!

(more generally, a T-algebra in a finite limit category C is a finite limit
preserving functor T → C)

This gives another perspective on the fact that every algebraic theory is
essentially algebraic.

• algebraic theories ≈ finite product categories

• essentially algebraic theories ≈ finite limit categories

• So algebraic theories are only using part of the structure of an
essentially algebraic theory!

• The difference is equalizers



Following Gabriel-Ulmer, essentially algebraic theories are finite limit
categories!

We identify a theory with T – (the opposite of) its category of finitely
presented algebras,

and an algebra becomes a finite limit preserving
functor from T to Set!

(more generally, a T-algebra in a finite limit category C is a finite limit
preserving functor T → C)

This gives another perspective on the fact that every algebraic theory is
essentially algebraic.

• algebraic theories ≈ finite product categories

• essentially algebraic theories ≈ finite limit categories

• So algebraic theories are only using part of the structure of an
essentially algebraic theory!

• The difference is equalizers



Following Gabriel-Ulmer, essentially algebraic theories are finite limit
categories!

We identify a theory with T – (the opposite of) its category of finitely
presented algebras, and an algebra becomes a finite limit preserving
functor from T to Set!

(more generally, a T-algebra in a finite limit category C is a finite limit
preserving functor T → C)

This gives another perspective on the fact that every algebraic theory is
essentially algebraic.

• algebraic theories ≈ finite product categories

• essentially algebraic theories ≈ finite limit categories

• So algebraic theories are only using part of the structure of an
essentially algebraic theory!

• The difference is equalizers



Following Gabriel-Ulmer, essentially algebraic theories are finite limit
categories!

We identify a theory with T – (the opposite of) its category of finitely
presented algebras, and an algebra becomes a finite limit preserving
functor from T to Set!

(more generally, a T-algebra in a finite limit category C is a finite limit
preserving functor T → C)

This gives another perspective on the fact that every algebraic theory is
essentially algebraic.

• algebraic theories ≈ finite product categories

• essentially algebraic theories ≈ finite limit categories

• So algebraic theories are only using part of the structure of an
essentially algebraic theory!

• The difference is equalizers



Following Gabriel-Ulmer, essentially algebraic theories are finite limit
categories!

We identify a theory with T – (the opposite of) its category of finitely
presented algebras, and an algebra becomes a finite limit preserving
functor from T to Set!

(more generally, a T-algebra in a finite limit category C is a finite limit
preserving functor T → C)

This gives another perspective on the fact that every algebraic theory is
essentially algebraic.

• algebraic theories ≈ finite product categories

• essentially algebraic theories ≈ finite limit categories

• So algebraic theories are only using part of the structure of an
essentially algebraic theory!

• The difference is equalizers



Following Gabriel-Ulmer, essentially algebraic theories are finite limit
categories!

We identify a theory with T – (the opposite of) its category of finitely
presented algebras, and an algebra becomes a finite limit preserving
functor from T to Set!

(more generally, a T-algebra in a finite limit category C is a finite limit
preserving functor T → C)

This gives another perspective on the fact that every algebraic theory is
essentially algebraic.

• algebraic theories ≈ finite product categories

• essentially algebraic theories ≈ finite limit categories

• So algebraic theories are only using part of the structure of an
essentially algebraic theory!

• The difference is equalizers



Following Gabriel-Ulmer, essentially algebraic theories are finite limit
categories!

We identify a theory with T – (the opposite of) its category of finitely
presented algebras, and an algebra becomes a finite limit preserving
functor from T to Set!

(more generally, a T-algebra in a finite limit category C is a finite limit
preserving functor T → C)

This gives another perspective on the fact that every algebraic theory is
essentially algebraic.

• algebraic theories ≈ finite product categories

• essentially algebraic theories ≈ finite limit categories

• So algebraic theories are only using part of the structure of an
essentially algebraic theory!

• The difference is equalizers



Following Gabriel-Ulmer, essentially algebraic theories are finite limit
categories!

We identify a theory with T – (the opposite of) its category of finitely
presented algebras, and an algebra becomes a finite limit preserving
functor from T to Set!

(more generally, a T-algebra in a finite limit category C is a finite limit
preserving functor T → C)

This gives another perspective on the fact that every algebraic theory is
essentially algebraic.

• algebraic theories ≈ finite product categories

• essentially algebraic theories ≈ finite limit categories

• So algebraic theories are only using part of the structure of an
essentially algebraic theory!

• The difference is equalizers



Following Gabriel-Ulmer, essentially algebraic theories are finite limit
categories!

We identify a theory with T – (the opposite of) its category of finitely
presented algebras, and an algebra becomes a finite limit preserving
functor from T to Set!

(more generally, a T-algebra in a finite limit category C is a finite limit
preserving functor T → C)

This gives another perspective on the fact that every algebraic theory is
essentially algebraic.

• algebraic theories ≈ finite product categories

• essentially algebraic theories ≈ finite limit categories

• So algebraic theories are only using part of the structure of an
essentially algebraic theory!

• The difference is equalizers



Following Gabriel-Ulmer, essentially algebraic theories are finite limit
categories!

We identify a theory with T – (the opposite of) its category of finitely
presented algebras, and an algebra becomes a finite limit preserving
functor from T to Set!

(more generally, a T-algebra in a finite limit category C is a finite limit
preserving functor T → C)

This gives another perspective on the fact that every algebraic theory is
essentially algebraic.

• algebraic theories ≈ finite product categories

• essentially algebraic theories ≈ finite limit categories

• So algebraic theories are only using part of the structure of an
essentially algebraic theory!

• The difference is equalizers



Indeed, if T is an algebraic theory, how can we view it as an essentially
algebraic theory?

Intuitively, we should freely add equalizers to turn it
into a finite limit category. If we write Eq(T) for the free equalizer
completion, then for a finite limit category C we compute:

{
T-models in C

}

≃ FinProd(T,UC)

≃ FinLim(Eq(T), C)

≃
{

Eq(T)-models in C
}

Here we’re thinking of the free construction Eq(−) as the left adjoint to
the forgetful functor U from finite limit categories to finite product
categories.



Indeed, if T is an algebraic theory, how can we view it as an essentially
algebraic theory? Intuitively, we should freely add equalizers to turn it
into a finite limit category.

If we write Eq(T) for the free equalizer
completion, then for a finite limit category C we compute:

{
T-models in C

}

≃ FinProd(T,UC)

≃ FinLim(Eq(T), C)

≃
{

Eq(T)-models in C
}

Here we’re thinking of the free construction Eq(−) as the left adjoint to
the forgetful functor U from finite limit categories to finite product
categories.



Indeed, if T is an algebraic theory, how can we view it as an essentially
algebraic theory? Intuitively, we should freely add equalizers to turn it
into a finite limit category. If we write Eq(T) for the free equalizer
completion, then for a finite limit category C we compute:

{
T-models in C

}

≃ FinProd(T,UC)

≃ FinLim(Eq(T), C)

≃
{

Eq(T)-models in C
}

Here we’re thinking of the free construction Eq(−) as the left adjoint to
the forgetful functor U from finite limit categories to finite product
categories.



Indeed, if T is an algebraic theory, how can we view it as an essentially
algebraic theory? Intuitively, we should freely add equalizers to turn it
into a finite limit category. If we write Eq(T) for the free equalizer
completion, then for a finite limit category C we compute:

{
T-models in C

}

≃ FinProd(T,UC)

≃ FinLim(Eq(T), C)

≃
{

Eq(T)-models in C
}

Here we’re thinking of the free construction Eq(−) as the left adjoint to
the forgetful functor U from finite limit categories to finite product
categories.



Indeed, if T is an algebraic theory, how can we view it as an essentially
algebraic theory? Intuitively, we should freely add equalizers to turn it
into a finite limit category. If we write Eq(T) for the free equalizer
completion, then for a finite limit category C we compute:

{
T-models in C

}
≃ FinProd(T,UC)

≃ FinLim(Eq(T), C)

≃
{

Eq(T)-models in C
}

Here we’re thinking of the free construction Eq(−) as the left adjoint to
the forgetful functor U from finite limit categories to finite product
categories.



Indeed, if T is an algebraic theory, how can we view it as an essentially
algebraic theory? Intuitively, we should freely add equalizers to turn it
into a finite limit category. If we write Eq(T) for the free equalizer
completion, then for a finite limit category C we compute:

{
T-models in C

}
≃ FinProd(T,UC)

≃ FinLim(Eq(T), C)

≃
{

Eq(T)-models in C
}

Here we’re thinking of the free construction Eq(−) as the left adjoint to
the forgetful functor U from finite limit categories to finite product
categories.



Indeed, if T is an algebraic theory, how can we view it as an essentially
algebraic theory? Intuitively, we should freely add equalizers to turn it
into a finite limit category. If we write Eq(T) for the free equalizer
completion, then for a finite limit category C we compute:

{
T-models in C

}
≃ FinProd(T,UC)

≃ FinLim(Eq(T), C)

≃
{

Eq(T)-models in C
}

Here we’re thinking of the free construction Eq(−) as the left adjoint to
the forgetful functor U from finite limit categories to finite product
categories.



Indeed, if T is an algebraic theory, how can we view it as an essentially
algebraic theory? Intuitively, we should freely add equalizers to turn it
into a finite limit category. If we write Eq(T) for the free equalizer
completion, then for a finite limit category C we compute:

{
T-models in C

}
≃ FinProd(T,UC)

≃ FinLim(Eq(T), C)

≃
{

Eq(T)-models in C
}

Here we’re thinking of the free construction Eq(−) as the left adjoint to
the forgetful functor U from finite limit categories to finite product
categories.



So to see if an essentially algebraic theory is actually
algebraic, we need to check if it’s Eq(−) of

something!

That is, we want to understand the essential image
of the Eq functor!



So to see if an essentially algebraic theory is actually
algebraic, we need to check if it’s Eq(−) of

something!

That is, we want to understand the essential image
of the Eq functor!



Grothendieck’s school has very general machinery for answering this
exact question!

Given an adjunction (L : A → X ) ⊣ (R : X → A) can we
tell when an X is isomorphic to LA for some A?

The keyword is Comonadicity of the adjunction.



Grothendieck’s school has very general machinery for answering this
exact question! Given an adjunction (L : A → X ) ⊣ (R : X → A) can we
tell when an X is isomorphic to LA for some A?

The keyword is Comonadicity of the adjunction.



Grothendieck’s school has very general machinery for answering this
exact question! Given an adjunction (L : A → X ) ⊣ (R : X → A) can we
tell when an X is isomorphic to LA for some A?

The keyword is Comonadicity of the adjunction.



Objects of the form LA always come with a LR-coalgebra structure.

So L : A → X factors as

A XLR

X

U

L

L

Definition
We say L ⊣ R is Comonadic if L : A → XLR is an equivalence.

That is, if we can recognize objects of the form LA as precisely those
objects X admitting an LR-coalgebra structure!

∥



Objects of the form LA always come with a LR-coalgebra structure.

So L : A → X factors as

A XLR

X

U

L

L

Definition
We say L ⊣ R is Comonadic if L : A → XLR is an equivalence.

That is, if we can recognize objects of the form LA as precisely those
objects X admitting an LR-coalgebra structure!

∥



Objects of the form LA always come with a LR-coalgebra structure.

So L : A → X factors as

A XLR

X

U

L

L

Definition
We say L ⊣ R is Comonadic if L : A → XLR is an equivalence.

That is, if we can recognize objects of the form LA as precisely those
objects X admitting an LR-coalgebra structure!

∥



Objects of the form LA always come with a LR-coalgebra structure.

So L : A → X factors as

A XLR

X

U

L

L

Definition
We say L ⊣ R is Comonadic if L : A → XLR is an equivalence.

That is, if we can recognize objects of the form LA as precisely those
objects X admitting an LR-coalgebra structure!

∥



Objects of the form LA always come with a LR-coalgebra structure.

So L : A → X factors as

A XLR

X

U

L

L

Definition
We say L ⊣ R is Comonadic if L : A → XLR is an equivalence.
That is, if we can recognize objects of the form LA as precisely those
objects X admitting an LR-coalgebra structure! ∥



So if we can show that Eq ⊣ U is comonadic, we’ll be done!

Thankfully, there’s a key theorem that lets us check exactly this!

Theorem (Beck ’60s)
L ⊣ R is comonadic if and only if

• L reflects isomorphisms
• L preserves “equalizers of coreflexive pairs”

These conditions sound scarier than they are, and with the explicit
definition of Eq(−) in a paper of Bunge-Carboni1 it’s not so hard to just
explicitly check these conditions.

1As I understand, the construction is originally due to Pitts, but went unpublished



So if we can show that Eq ⊣ U is comonadic, we’ll be done!

Thankfully, there’s a key theorem that lets us check exactly this!

Theorem (Beck ’60s)
L ⊣ R is comonadic if and only if

• L reflects isomorphisms
• L preserves “equalizers of coreflexive pairs”

These conditions sound scarier than they are, and with the explicit
definition of Eq(−) in a paper of Bunge-Carboni1 it’s not so hard to just
explicitly check these conditions.

1As I understand, the construction is originally due to Pitts, but went unpublished



So if we can show that Eq ⊣ U is comonadic, we’ll be done!

Thankfully, there’s a key theorem that lets us check exactly this!

Theorem (Beck ’60s)
L ⊣ R is comonadic if and only if
• L reflects isomorphisms
• L preserves “equalizers of coreflexive pairs”

These conditions sound scarier than they are, and with the explicit
definition of Eq(−) in a paper of Bunge-Carboni1 it’s not so hard to just
explicitly check these conditions.

1As I understand, the construction is originally due to Pitts, but went unpublished



So if we can show that Eq ⊣ U is comonadic, we’ll be done!

Thankfully, there’s a key theorem that lets us check exactly this!

Theorem (Beck ’60s)
L ⊣ R is comonadic if and only if
• L reflects isomorphisms
• L preserves “equalizers of coreflexive pairs”

These conditions sound scarier than they are, and with the explicit
definition of Eq(−) in a paper of Bunge-Carboni1 it’s not so hard to just
explicitly check these conditions.

1As I understand, the construction is originally due to Pitts, but went unpublished



So we can recognize the algebraic theories as those essentially algebraic
theories of the essential image of Eq(−).

Moreover, we can recognize
those as the essentially algebraic theories which admit a certain coalgebra
structure.

Pedicchio and Wood push this further, and give a concrete description of
the categories we’re interested in! The key definition is that of “enough
effective projectives”.



So we can recognize the algebraic theories as those essentially algebraic
theories of the essential image of Eq(−). Moreover, we can recognize
those as the essentially algebraic theories which admit a certain coalgebra
structure.

Pedicchio and Wood push this further, and give a concrete description of
the categories we’re interested in! The key definition is that of “enough
effective projectives”.



So we can recognize the algebraic theories as those essentially algebraic
theories of the essential image of Eq(−). Moreover, we can recognize
those as the essentially algebraic theories which admit a certain coalgebra
structure.

Pedicchio and Wood push this further, and give a concrete description of
the categories we’re interested in! The key definition is that of “enough
effective projectives”.



What’s Next?

I’ve spent some time thinking about this, and it’s harder because the left
adjoint is a bit brutal.

But, using an explicit construction that Todd Trimble posted on the nlab
forums, it should be possible to play the same game. But there’s still lots
of details to check.



What’s Next?

FinLim ≈ essentially algebraic

FinProd ≈ algebraic

UEq ⊣

I’ve spent some time thinking about this, and it’s harder because the left
adjoint is a bit brutal.

But, using an explicit construction that Todd Trimble posted on the nlab
forums, it should be possible to play the same game. But there’s still lots
of details to check.



What’s Next?

FinProd ≈ algebraic

SymMon ≈ props

UEq ⊣

I’ve spent some time thinking about this, and it’s harder because the left
adjoint is a bit brutal.

But, using an explicit construction that Todd Trimble posted on the nlab
forums, it should be possible to play the same game. But there’s still lots
of details to check.



What’s Next?

FinProd ≈ algebraic

SymMon ≈ props

UEq ⊣

I’ve spent some time thinking about this, and it’s harder because the left
adjoint is a bit brutal.

But, using an explicit construction that Todd Trimble posted on the nlab
forums, it should be possible to play the same game. But there’s still lots
of details to check.



What’s Next?

FinProd ≈ algebraic

SymMon ≈ props

UEq ⊣

I’ve spent some time thinking about this, and it’s harder because the left
adjoint is a bit brutal.

But, using an explicit construction that Todd Trimble posted on the nlab
forums, it should be possible to play the same game. But there’s still lots
of details to check.



If you want to read more, you’ll likely be interested in

• Adámek, Vitale, and Rosický’s Algebraic Theories

• Borceux’s Handbook of Categorical Algebra (Vol 2)

• Bunge and Carboni’s The Symmetric Topos

• Palmgren and Vicker’s Partial Horn Logic and Cartesian Categories

and of course

• Pedicchio and Wood’s A Simple Characterization of Theories of
Varieties



Thank You!


	A Review of (Essentially Algebraic Theories)
	A Natural Question
	Functorial Semantics
	Descent

