2-categorical Descent and (Essentially) Algebraic Theories

Chris Grossack (they/them)
UC Riverside

October 28, 2023

Definition

An Algebraic Theory is specified by

Definition

An Algebraic Theory is specified by

- Some sets A_{i}

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- A set G

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- A set G
- Operations

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- A set G
- Operations
- $m: G \times G \rightarrow G$

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- A set G
- Operations
- $m: G \times G \rightarrow G$
- $i: G \rightarrow G$

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- A set G
- Operations
- $m: G \times G \rightarrow G$
- $i: G \rightarrow G$
- $e: 1 \rightarrow G$

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- A set G
- Operations
- $m: G \times G \rightarrow G$
- $i: G \rightarrow G$
- $e: 1 \rightarrow G$
- Axioms

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- A set G
- Operations
- $m: G \times G \rightarrow G$
- $i: G \rightarrow G$
- $e: 1 \rightarrow G$
- Axioms
- $m(m(x, y), z)=m(x, m(y, z))$

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- A set G
- Operations
- $m: G \times G \rightarrow G$
- $i: G \rightarrow G$
- $e: 1 \rightarrow G$
- Axioms
- $m(m(x, y), z)=m(x, m(y, z))$
- $m(x, e)=x=m(e, x)$

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- A set G
- Operations
- $m: G \times G \rightarrow G$
- $i: G \rightarrow G$
- $e: 1 \rightarrow G$
- Axioms
- $m(m(x, y), z)=m(x, m(y, z))$
- $m(x, e)=x=m(e, x)$
- $m(x, i(x))=e=m(i(x), x)$

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- Rings

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- Rings
- Modules

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- Rings
- Modules
- Ring/Module Pairs

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Sets R and M
- Groups
- Rings
- Modules
- Ring/Module Pairs

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Sets R and M
- Operations
- Groups
- Rings
- Modules
- Ring/Module Pairs

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Sets R and M
- Operations
- Groups

$$
\bullet+_{R}, x_{R}: R \times R \rightarrow R \text { and }-_{R}: R \rightarrow R
$$

- Rings
- Modules
- Ring/Module Pairs

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Sets R and M
- Operations
- Groups
- Rings
- Modules
- Ring/Module Pairs
- $+_{R}, x_{R}: R \times R \rightarrow R$ and $-R: R \rightarrow R$
- $0_{R}, 1_{R}: 1 \rightarrow R$

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Sets R and M
- Operations
- Groups
- Rings
- Modules
- Ring/Module Pairs
- $+_{R}, x_{R}: R \times R \rightarrow R$ and $-R: R \rightarrow R$
- $0_{R}, 1_{R}: 1 \rightarrow R$
- $+M: M \times M \rightarrow M$ and $-M: M \rightarrow M$

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Sets R and M
- Operations
- Groups
- Rings
- Modules
- Ring/Module Pairs
- $+_{R}, x_{R}: R \times R \rightarrow R$ and $-R: R \rightarrow R$
- $0_{R}, 1_{R}: 1 \rightarrow R$
- $+M: M \times M \rightarrow M$ and $-M: M \rightarrow M$
- $0_{M}: 1 \rightarrow M$

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Sets R and M
- Operations
- Groups
- Rings
- Modules
- Ring/Module Pairs
- $+_{R}, x_{R}: R \times R \rightarrow R$ and $-R: R \rightarrow R$
- $0_{R}, 1_{R}: 1 \rightarrow R$
- $+M: M \times M \rightarrow M$ and $-M: M \rightarrow M$
- $0_{M}: 1 \rightarrow M$
- . : $R \times M \rightarrow M$

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Sets R and M
- Operations
- Groups
- Rings
- Modules
- Ring/Module Pairs
- $+_{R}, x_{R}: R \times R \rightarrow R$ and $-R: R \rightarrow R$
- $0_{R}, 1_{R}: 1 \rightarrow R$
- $+M: M \times M \rightarrow M$ and $-M: M \rightarrow M$
- $0_{M}: 1 \rightarrow M$
$\cdot \quad: R \times M \rightarrow M$
- Axioms

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Sets R and M
- Operations
- Groups
- Rings
- Modules
- Ring/Module Pairs
- $+_{R}, x_{R}: R \times R \rightarrow R$ and $-R: R \rightarrow R$
- $0_{R}, 1_{R}: 1 \rightarrow R$
- $+M: M \times M \rightarrow M$ and $-M: M \rightarrow M$
- $0_{M}: 1 \rightarrow M$
$\cdot \quad: R \times M \rightarrow M$
- Axioms
- The usual ring axioms for R

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Sets R and M
- Operations
- Groups
- Rings
- Modules
- Ring/Module Pairs
- $+_{R}, x_{R}: R \times R \rightarrow R$ and $-R: R \rightarrow R$
- $0_{R}, 1_{R}: 1 \rightarrow R$
- $+M: M \times M \rightarrow M$ and $-M: M \rightarrow M$
- $0_{M}: 1 \rightarrow M$
$\cdot: R \times M \rightarrow M$
- Axioms
- The usual ring axioms for R
- The usual abelian group axioms for M

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Sets R and M
- Operations
- Groups
- Rings
- Modules
- Ring/Module Pairs
- $+_{R}, x_{R}: R \times R \rightarrow R$ and $-R: R \rightarrow R$
- $0_{R}, 1_{R}: 1 \rightarrow R$
- $+M: M \times M \rightarrow M$ and $-M: M \rightarrow M$
- $0_{M}: 1 \rightarrow M$
$\cdot \quad: R \times M \rightarrow M$
- Axioms
- The usual ring axioms for R
- The usual abelian group axioms for M
- $\left(r_{1} \times R r_{2}\right) \cdot m=r_{1} \cdot\left(r_{2} \cdot m\right)$

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Sets R and M
- Operations
- Groups
- Rings
- Modules
- Ring/Module Pairs
- $+_{R}, x_{R}: R \times R \rightarrow R$ and $-R: R \rightarrow R$
- $0_{R}, 1_{R}: 1 \rightarrow R$
- $+M: M \times M \rightarrow M$ and $-M: M \rightarrow M$
- $0_{M}: 1 \rightarrow M$
- . : $R \times M \rightarrow M$
- Axioms
- The usual ring axioms for R
- The usual abelian group axioms for M
- $\left(r_{1} \times{ }_{R} r_{2}\right) \cdot m=r_{1} \cdot\left(r_{2} \cdot m\right)$
- etc.

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups

Algebraic theories have many nice properties

- Rings
- Modules
- Ring/Module Pairs

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- Rings

Algebraic theories have many nice properties

- free models exist
- Modules
- Ring/Module Pairs

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- Rings
- Modules
- Ring/Module Pairs

Algebraic theories have many nice properties

- free models exist
- (co)limits of existing models exist

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- Rings
- Modules
- Ring/Module Pairs

Algebraic theories have many nice properties

- free models exist
- (co)limits of existing models exist
- (so we have presentations by generators and relations)

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- Rings
- Modules
- Ring/Module Pairs

Algebraic theories have many nice properties

- free models exist
- (co)limits of existing models exist
- (so we have presentations by generators and relations)
- homomorphism theorems work

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- Rings
- Modules
- Ring/Module Pairs

Algebraic theories have many nice properties

- free models exist
- (co)limits of existing models exist
- (so we have presentations by generators and relations)
- homomorphism theorems work
- etc.

Definition

An Algebraic Theory is specified by

- Some sets A_{i}
- Some operations from (products of) the A_{i} to some A_{j}
- Some equations we require of the operations

Examples:

- Groups
- Rings
- Modules
- Ring/Module Pairs
- Unfortunately, Not Categories!

Algebraic theories have many nice properties

- free models exist
- (co)limits of existing models exist
- (so we have presentations by generators and relations)
- homomorphism theorems work
- etc.

A (strict) Category has

- Sets Ob and Arr

A (strict) Category has

- Sets Ob and Arr
- Operations

A (strict) Category has

- Sets Ob and Arr
- Operations
- dom :

A (strict) Category has

- Sets Ob and Arr
- Operations
- dom : Arr $\rightarrow \mathrm{Ob}$

A (strict) Category has

- Sets Ob and Arr
- Operations
- dom : Arr \rightarrow Ob
- cod:

A (strict) Category has

- Sets Ob and Arr
- Operations
- dom : Arr \rightarrow Ob
- cod : Arr \rightarrow Ob

A (strict) Category has

- Sets Ob and Arr
- Operations
- dom : Arr $\rightarrow \mathrm{Ob}$
- cod : Arr $\rightarrow \mathrm{Ob}$
- id :

A (strict) Category has

- Sets Ob and Arr
- Operations
- dom : Arr \rightarrow Ob
- cod : Arr \rightarrow Ob
- id : Ob \rightarrow Arr

A (strict) Category has

- Sets Ob and Arr
- Operations
- dom : Arr $\rightarrow \mathrm{Ob}$
- cod : Arr \rightarrow Ob
- id : Ob \rightarrow Arr
- o:

A (strict) Category has

- Sets Ob and Arr
- Operations
- dom : Arr $\rightarrow \mathrm{Ob}$
- cod : Arr \rightarrow Ob
- id : Ob \rightarrow Arr
- o: Uh Oh!

It's kind of true that ○ : Arr \times Arr \rightarrow Arr

A (strict) Category has

- Sets Ob and Arr
- Operations
- dom : Arr $\rightarrow \mathrm{Ob}$
- cod : Arr \rightarrow Ob
- id : Ob \rightarrow Arr
- o : Uh Oh!

A (strict) Category has

- Sets Ob and Arr
- Operations
- dom : Arr $\rightarrow \mathrm{Ob}$
- cod : Arr \rightarrow Ob
- id : Ob \rightarrow Arr
- o: Uh Oh!

It's kind of true that
$0:$ Arr \times Arr \rightarrow Arr but $f \circ g$ only makes sense if $\operatorname{dom}(f)=\operatorname{cod}(g)$!

A (strict) Category has

- Sets Ob and Arr
- Operations
- dom : Arr \rightarrow Ob
- cod : Arr \rightarrow Ob
- id : Ob \rightarrow Arr
- o: Uh Oh!

It's kind of true that
$0:$ Arr \times Arr \rightarrow Arr but $f \circ g$ only makes sense if $\operatorname{dom}(f)=\operatorname{cod}(g)!$

Composition is only partially defined!

A (strict) Category has

- Sets Ob and Arr
- Operations
- dom : Arr \rightarrow Ob
- cod : Arr $\rightarrow \mathrm{Ob}$
- id : Ob \rightarrow Arr
- o: Uh Oh!

It's kind of true that
○ : Arr \times Arr \rightarrow Arr but $f \circ g$ only makes sense if $\operatorname{dom}(f)=\operatorname{cod}(g)!$

Composition is only partially defined!
Of course, we would still like to have all those nice properties for categories (and other gadgets more general than algebraic theories)

A (strict) Category has

- Sets Ob and Arr
- Operations
- dom : Arr $\rightarrow \mathrm{Ob}$
- cod : Arr $\rightarrow \mathrm{Ob}$
- id : Ob \rightarrow Arr
- o: Uh Oh!

It's kind of true that
○ : Arr \times Arr \rightarrow Arr but $f \circ g$ only makes sense if $\operatorname{dom}(f)=\operatorname{cod}(g)!$

Composition is only partially defined!
Of course, we would still like to have all those nice properties for categories (and other gadgets more general than algebraic theories)

Whatever are we to do!?

Definition

An Essentially Algebraic Theory is specified by

Definition

An Essentially Algebraic Theory is specified by

- Some sets A_{i}

Definition

An Essentially Algebraic Theory is specified by

- Some sets A_{i}
- Some total operations from (products of) the A_{i} to some A_{j}

Definition

An Essentially Algebraic Theory is specified by

- Some sets A_{i}
- Some total operations from (products of) the A_{i} to some A_{j}
- Some partial operations from "nice" subsets of products of the A_{i} to some A_{j}

Definition
An Essentially Algebraic Theory is specified by

- Some sets A_{i}
- Some total operations from (products of) the A_{i} to some A_{j}
- Some partial operations from "nice" subsets of products of the A_{i} to some A_{j}
- Some equations we require of the operations

Definition
An Essentially Algebraic Theory is specified by

- Some sets A_{i}
- Some total operations from (products of) the A_{i} to some A_{j}
- Some partial operations from "nice" subsets of products of the A_{i} to some A_{j}
- Some equations we require of the operations

By "nice" we mean that the domain of a partial operation should be specified by some equations in the total operations

Definition

An Essentially Algebraic Theory is specified by

- Some sets A_{i}
- Some total operations from (products of) the A_{i} to some A_{j}
- Some partial operations from "nice" subsets of products of the A_{i} to some A_{j}
- Some equations we require of the operations

By "nice" we mean that the domain of a partial operation should be specified by some equations in the total operations

For example, the domain of \circ is

$$
\{(f, g) \in A \times A \mid \operatorname{dom}(f)=\operatorname{cod}(g)\}
$$

which is defined by some equations in the total operations.

In fact essentially algebraic theories are even more useful than they initially look!

It's a (nonobvious) fact that every horn theory is essentially algebraic.

In fact essentially algebraic theories are even more useful than they initially look!

It's a (nonobvious) fact that every horn theory is essentially algebraic.
In particular, this gives examples like

In fact essentially algebraic theories are even more useful than they initially look!

It's a (nonobvious) fact that every horn theory is essentially algebraic.
In particular, this gives examples like

- Posets: $(x \leq y) \wedge(y \leq z) \rightarrow(x \leq z)$

In fact essentially algebraic theories are even more useful than they initially look!

It's a (nonobvious) fact that every horn theory is essentially algebraic. In particular, this gives examples like

- Posets: $(x \leq y) \wedge(y \leq z) \rightarrow(x \leq z)$
- Cancellable Monoids: $a x=b x \rightarrow a=b$

In fact essentially algebraic theories are even more useful than they initially look!

It's a (nonobvious) fact that every horn theory is essentially algebraic.
In particular, this gives examples like

- Posets: $(x \leq y) \wedge(y \leq z) \rightarrow(x \leq z)$
- Cancellable Monoids: $a x=b x \rightarrow a=b$
- Torsion-free Abelian Groups: $\underbrace{x+\cdots+x}_{n \text { times }}=0 \rightarrow x=0$

In fact essentially algebraic theories are even more useful than they initially look！

It＇s a（nonobvious）fact that every horn theory is essentially algebraic．
In particular，this gives examples like
－Posets：$(x \leq y) \wedge(y \leq z) \rightarrow(x \leq z)$
－Cancellable Monoids：$a x=b x \rightarrow a=b$
－Torsion－free Abelian Groups：$\underbrace{x+\cdots+x}_{n \text { times }}=0 \rightarrow x=0$
－etc．

In fact essentially algebraic theories are even more useful than they initially look!

It's a (nonobvious) fact that every horn theory is essentially algebraic.
In particular, this gives examples like

- Posets: $(x \leq y) \wedge(y \leq z) \rightarrow(x \leq z)$
- Cancellable Monoids: $a x=b x \rightarrow a=b$
- Torsion-free Abelian Groups: $\underbrace{x+\cdots+x}_{n \text { times }}=0 \rightarrow x=0$
- etc.

So anything we can say about essentially algebraic theories (free models, (co)limits, etc.) will immediately give us theorems for a huge class of objects that working mathematicians care about!

In fact essentially algebraic theories are even more useful than they initially look!

It's a (nonobvious) fact that every horn theory is essentially algebraic.
In particular, this gives examples like

- Posets: $(x \leq y) \wedge(y \leq z) \rightarrow(x \leq z)$
- Cancellable Monoids: $a x=b x \rightarrow a=b$
- Torsion-free Abelian Groups: $\underbrace{x+\cdots+x}_{n \text { times }}=0 \rightarrow x=0$
- etc.

So anything we can say about essentially algebraic theories (free models, (co)limits, etc.) will immediately give us theorems for a huge class of objects that working mathematicians care about!

Which is why it's good that. . .

Theorem
For essentially algebraic theories, we have

Theorem
For essentially algebraic theories, we have

- (co)limits of models

Theorem
For essentially algebraic theories, we have

- (co)limits of models
- free models

Theorem
For essentially algebraic theories, we have

- (co)limits of models
- free models
- (in particular, presentations)

Theorem
For essentially algebraic theories, we have

- (co)limits of models
- free models
- (in particular, presentations)
- etc.

Theorem
For essentially algebraic theories, we have

- (co)limits of models
- free models
- (in particular, presentations)
- etc.

Unfortunately, they're not quite as nice as algebraic theories. . .

There are lots of subtle ways this is true, but here's a very concrete example:

There are lots of subtle ways this is true, but here's a very concrete example:

For algebraic theories, the underlying set of a quotient is a quotient of the underlying set

There are lots of subtle ways this is true, but here's a very concrete example:

For algebraic theories, the underlying set of a quotient is a quotient of the underlying set
eg, the underlying set of the group G / N is a quotient of the underlying set of G (under the relation $g \sim h \Longleftrightarrow g h^{-1} \in N$).

There are lots of subtle ways this is true, but here's a very concrete example:

For algebraic theories, the underlying set of a quotient is a quotient of the underlying set
eg, the underlying set of the group G / N is a quotient of the underlying set of G (under the relation $g \sim h \Longleftrightarrow g h^{-1} \in N$).
This does not need to be true for models of essentially algebraic theories!

For Example:

For Example:

$$
X \xrightarrow{f} Y_{1} \quad Y_{2} \xrightarrow{g} Z
$$

For Example:

$$
X \xrightarrow{f} Y_{1} \quad Y_{2} \xrightarrow{g} Z
$$

Let's quotient to make $Y_{1}=Y_{2}$

For Example:

$$
X \xrightarrow{f} Y_{1} \quad Y_{2} \xrightarrow{g} Z
$$

Let's quotient to make $Y_{1}=Y_{2}$

$$
X \xrightarrow{f} Y \xrightarrow{g} Z
$$

For Example:

$$
X \xrightarrow{f} Y_{1} \quad Y_{2} \xrightarrow{g} Z
$$

Let's quotient to make $Y_{1}=Y_{2}$

$$
X \xrightarrow{f} Y \xrightarrow{g} Z
$$

After quotienting the objects, our partial operation o sees that f and g are composable! So we must add an arrow $g \circ f$

For Example:

$$
X \xrightarrow{f} Y_{1} \quad Y_{2} \xrightarrow{g} Z
$$

Let's quotient to make $Y_{1}=Y_{2}$

After quotienting the objects, our partial operation o sees that f and g are composable! So we must add an arrow $g \circ f$

For Example:

$$
X \xrightarrow{f} Y_{1} \quad Y_{2} \xrightarrow{g} Z
$$

Let's quotient to make $Y_{1}=Y_{2}$

After quotienting the objects, our partial operation o sees that f and g are composable! So we must add an arrow $g \circ f$
But this means, in the quotient, our set of arrows is $\{f, g, g \circ f\}$, which is not a quotient of our original set of arrows $\{f, g\}$!

Moreover, algebraic theories admit models in any category with finite products

Moreover, algebraic theories admit models in any category with finite products
eg. topological groups,

Moreover, algebraic theories admit models in any category with finite products
eg. topological groups, lie groups,

Moreover, algebraic theories admit models in any category with finite products
eg. topological groups, lie groups, algebraic groups,

Moreover, algebraic theories admit models in any category with finite products
eg. topological groups, lie groups, algebraic groups, etc.

Moreover, algebraic theories admit models in any category with finite products
eg. topological groups, lie groups, algebraic groups, etc. are "just" group objects in their respective categories.

Moreover, algebraic theories admit models in any category with finite products
eg. topological groups, lie groups, algebraic groups, etc. are "just" group objects in their respective categories.

But essentially algebraic theories only admit models in a category with finite limits.

Moreover, algebraic theories admit models in any category with finite products
eg. topological groups, lie groups, algebraic groups, etc. are "just" group objects in their respective categories.

But essentially algebraic theories only admit models in a category with finite limits. (that is, we need equalizers too!)

Moreover, algebraic theories admit models in any category with finite products
eg. topological groups, lie groups, algebraic groups, etc. are "just" group objects in their respective categories.

But essentially algebraic theories only admit models in a category with finite limits. (that is, we need equalizers too!) This is annoying if we want to interpret "smooth" versions of our algebras, since Diff famously lacks finite limits!

Moreover, algebraic theories admit models in any category with finite products
eg. topological groups, lie groups, algebraic groups, etc. are "just" group objects in their respective categories.

But essentially algebraic theories only admit models in a category with finite limits. (that is, we need equalizers too!) This is annoying if we want to interpret "smooth" versions of our algebras, since Diff famously lacks finite limits!

For instance, this is why a lie groupoid is not simply a groupoid object in Diff. Groupoids, special categories, are merely essentially algebraic!

Since algebraic theories are better behaved, we find ourselves with a natural question:

Since algebraic theories are better behaved, we find ourselves with a natural question:

Given an essentially algebraic theory in the wild, is there a way to check whether it's secretly algebraic?

Since algebraic theories are better behaved, we find ourselves with a natural question:

Given an essentially algebraic theory in the wild, is there a way to check whether it's secretly algebraic?

Theorem (Pedicchio-Wood '99, independently G.)

Since algebraic theories are better behaved, we find ourselves with a natural question:

Given an essentially algebraic theory in the wild, is there a way to check whether it's secretly algebraic?

Theorem (Pedicchio-Wood '99, independently G.) Yes!

Since algebraic theories are better behaved, we find ourselves with a natural question:

Given an essentially algebraic theory in the wild, is there a way to check whether it's secretly algebraic?

Theorem (Pedicchio-Wood '99, independently G.) Yes!

Both proofs are basically the same, and crucially use quite a lot of category theory!

Next we recall Functorial Semantics:

Next we recall Functorial Semantics:
Following Lawvere, algebraic theories are finite product categories!

Next we recall Functorial Semantics:
Following Lawvere, algebraic theories are finite product categories! We identify a theory with \mathbb{T} - (the opposite of) its category of finitely generated free algebras,

Next we recall Functorial Semantics:
Following Lawvere, algebraic theories are finite product categories! We identify a theory with \mathbb{T} - (the opposite of) its category of finitely generated free algebras, and an algebra becomes a finte product preserving functor from \mathbb{T} to Set!

Next we recall Functorial Semantics:

Following Lawvere, algebraic theories are finite product categories! We identify a theory with \mathbb{T} - (the opposite of) its category of finitely generated free algebras, and an algebra becomes a finte product preserving functor from \mathbb{T} to Set!
(more generally, a \mathbb{T}-algebra in a finite product category \mathcal{C} is a finite product preserving functor $\mathbb{T} \rightarrow \mathcal{C}$)

Let's look at groups, for example:

Let's look at groups, for example:

$$
\rangle \quad\langle x\rangle \quad\langle a, b\rangle \quad \ldots
$$

Let's look at groups, for example:

$$
\begin{gathered}
\rangle \stackrel{!}{\longleftarrow}\langle x\rangle \xrightarrow{a b}\langle a, b\rangle \quad \ldots \\
x^{-\mathbf{1}} \downarrow \\
\langle x\rangle
\end{gathered}
$$

Let's look at groups, for example:

$$
\left\rangle \xrightarrow[!]{\longrightarrow}\langle x\rangle{ }_{\substack{a b}}\langle a, b\rangle\right.
$$

Let's look at groups, for example:

$$
\begin{aligned}
& \left\rangle \underset{!}{\longrightarrow}\langle x\rangle \overleftarrow{a b}^{{ }_{a b}}\langle a, b\rangle\right. \\
& \uparrow_{x^{-1}} \\
& \langle x\rangle \\
& \succsim\langle x\rangle \mapsto G \\
& G^{0} \longrightarrow \underset{\uparrow_{x^{-1}}}{G^{1} \leftarrow_{a b}} G^{2}
\end{aligned}
$$

Let's look at groups, for example:

$$
\begin{aligned}
& \left\rangle \longrightarrow!\langle x\rangle \overleftarrow{a b}^{\leftrightarrows}\langle a, b\rangle\right. \\
& \uparrow_{x^{-1}} \\
& \langle x\rangle \\
& \sum\langle x\rangle \mapsto G \\
& G^{0} \underset{e}{\longrightarrow} G^{1} \leftarrow_{m} G^{2} \\
& \begin{array}{l}
\uparrow_{i} \\
G^{1}
\end{array}
\end{aligned}
$$

Following Gabriel-Ulmer, essentially algebraic theories are finite limit categories!

Following Gabriel-Ulmer, essentially algebraic theories are finite limit categories!
We identify a theory with \mathbb{T} - (the opposite of) its category of finitely presented algebras,

Following Gabriel-Ulmer, essentially algebraic theories are finite limit categories!
We identify a theory with \mathbb{T} - (the opposite of) its category of finitely presented algebras, and an algebra becomes a finite limit preserving functor from \mathbb{T} to Set!

Following Gabriel-Ulmer, essentially algebraic theories are finite limit categories!
We identify a theory with \mathbb{T} - (the opposite of) its category of finitely presented algebras, and an algebra becomes a finite limit preserving functor from \mathbb{T} to Set!

Following Gabriel-Ulmer, essentially algebraic theories are finite limit categories!
We identify a theory with \mathbb{T} - (the opposite of) its category of finitely presented algebras, and an algebra becomes a finite limit preserving functor from \mathbb{T} to Set!
(more generally, a \mathbb{T}-algebra in a finite limit category \mathcal{C} is a finite limit preserving functor $\mathbb{T} \rightarrow \mathcal{C}$)

Following Gabriel-Ulmer, essentially algebraic theories are finite limit categories!
We identify a theory with \mathbb{T} - (the opposite of) its category of finitely presented algebras, and an algebra becomes a finite limit preserving functor from \mathbb{T} to Set!
(more generally, a \mathbb{T}-algebra in a finite limit category \mathcal{C} is a finite limit preserving functor $\mathbb{T} \rightarrow \mathcal{C}$)
This gives another perspective on the fact that every algebraic theory is essentially algebraic.

Following Gabriel-Ulmer, essentially algebraic theories are finite limit categories!
We identify a theory with \mathbb{T} - (the opposite of) its category of finitely presented algebras, and an algebra becomes a finite limit preserving functor from \mathbb{T} to Set!
(more generally, a \mathbb{T}-algebra in a finite limit category \mathcal{C} is a finite limit preserving functor $\mathbb{T} \rightarrow \mathcal{C}$)
This gives another perspective on the fact that every algebraic theory is essentially algebraic.

- algebraic theories \approx finite product categories

Following Gabriel-Ulmer, essentially algebraic theories are finite limit categories!
We identify a theory with \mathbb{T} - (the opposite of) its category of finitely presented algebras, and an algebra becomes a finite limit preserving functor from \mathbb{T} to Set!
(more generally, a \mathbb{T}-algebra in a finite limit category \mathcal{C} is a finite limit preserving functor $\mathbb{T} \rightarrow \mathcal{C}$)
This gives another perspective on the fact that every algebraic theory is essentially algebraic.

- algebraic theories \approx finite product categories
- essentially algebraic theories \approx finite limit categories

Following Gabriel-Ulmer, essentially algebraic theories are finite limit categories!
We identify a theory with \mathbb{T} - (the opposite of) its category of finitely presented algebras, and an algebra becomes a finite limit preserving functor from \mathbb{T} to Set!
(more generally, a \mathbb{T}-algebra in a finite limit category \mathcal{C} is a finite limit preserving functor $\mathbb{T} \rightarrow \mathcal{C}$)
This gives another perspective on the fact that every algebraic theory is essentially algebraic.

- algebraic theories \approx finite product categories
- essentially algebraic theories \approx finite limit categories
- So algebraic theories are only using part of the structure of an essentially algebraic theory!

Following Gabriel-Ulmer, essentially algebraic theories are finite limit categories!
We identify a theory with \mathbb{T} - (the opposite of) its category of finitely presented algebras, and an algebra becomes a finite limit preserving functor from \mathbb{T} to Set!
(more generally, a \mathbb{T}-algebra in a finite limit category \mathcal{C} is a finite limit preserving functor $\mathbb{T} \rightarrow \mathcal{C}$)
This gives another perspective on the fact that every algebraic theory is essentially algebraic.

- algebraic theories \approx finite product categories
- essentially algebraic theories \approx finite limit categories
- So algebraic theories are only using part of the structure of an essentially algebraic theory!
- The difference is equalizers

Indeed, if \mathbb{T} is an algebraic theory, how can we view it as an essentially algebraic theory?

Indeed, if \mathbb{T} is an algebraic theory, how can we view it as an essentially algebraic theory? Intuitively, we should freely add equalizers to turn it into a finite limit category.

Indeed, if \mathbb{T} is an algebraic theory, how can we view it as an essentially algebraic theory? Intuitively, we should freely add equalizers to turn it into a finite limit category. If we write $\mathrm{Eq}(\mathbb{T})$ for the free equalizer completion, then for a finite limit category \mathcal{C} we compute:

Indeed, if \mathbb{T} is an algebraic theory, how can we view it as an essentially algebraic theory? Intuitively, we should freely add equalizers to turn it into a finite limit category. If we write $\mathrm{Eq}(\mathbb{T})$ for the free equalizer completion, then for a finite limit category \mathcal{C} we compute:

$$
\{\mathbb{T} \text {-models in } \mathcal{C}\}
$$

Indeed, if \mathbb{T} is an algebraic theory, how can we view it as an essentially algebraic theory? Intuitively, we should freely add equalizers to turn it into a finite limit category. If we write $\mathrm{Eq}(\mathbb{T})$ for the free equalizer completion, then for a finite limit category \mathcal{C} we compute:

$$
\{\mathbb{T} \text {-models in } \mathcal{C}\} \simeq \operatorname{FinProd}(\mathbb{T}, \cup \mathcal{C})
$$

Indeed, if \mathbb{T} is an algebraic theory, how can we view it as an essentially algebraic theory? Intuitively, we should freely add equalizers to turn it into a finite limit category. If we write $\mathrm{Eq}(\mathbb{T})$ for the free equalizer completion, then for a finite limit category \mathcal{C} we compute:

$$
\begin{aligned}
\{\mathbb{T} \text {-models in } \mathcal{C}\} & \simeq \operatorname{Fin} \operatorname{Prod}(\mathbb{T}, U \mathcal{C}) \\
& \simeq \operatorname{FinLim}(\operatorname{Eq}(\mathbb{T}), \mathcal{C})
\end{aligned}
$$

Indeed, if \mathbb{T} is an algebraic theory, how can we view it as an essentially algebraic theory? Intuitively, we should freely add equalizers to turn it into a finite limit category. If we write $\mathrm{Eq}(\mathbb{T})$ for the free equalizer completion, then for a finite limit category \mathcal{C} we compute:

$$
\begin{aligned}
\{\mathbb{T} \text {-models in } \mathcal{C}\} & \simeq \operatorname{FinProd}(\mathbb{T}, \cup \mathcal{C}) \\
& \simeq \operatorname{FinLim}(\operatorname{Eq}(\mathbb{T}), \mathcal{C}) \\
& \simeq\{\operatorname{Eq}(\mathbb{T})-\text { models in } \mathcal{C}\}
\end{aligned}
$$

Indeed, if \mathbb{T} is an algebraic theory, how can we view it as an essentially algebraic theory? Intuitively, we should freely add equalizers to turn it into a finite limit category. If we write $\mathrm{Eq}(\mathbb{T})$ for the free equalizer completion, then for a finite limit category \mathcal{C} we compute:

$$
\begin{aligned}
\{\mathbb{T} \text {-models in } \mathcal{C}\} & \simeq \operatorname{FinProd}(\mathbb{T}, \cup \mathcal{C}) \\
& \simeq \operatorname{FinLim}(\operatorname{Eq}(\mathbb{T}), \mathcal{C}) \\
& \simeq\{\operatorname{Eq}(\mathbb{T})-\text { models in } \mathcal{C}\}
\end{aligned}
$$

Here we're thinking of the free construction $\mathrm{Eq}(-)$ as the left adjoint to the forgetful functor U from finite limit categories to finite product categories.

So to see if an essentially algebraic theory is actually algebraic, we need to check if it's Eq(-) of something!

So to see if an essentially algebraic theory is actually algebraic, we need to check if it's $\mathrm{Eq}(-)$ of something!

That is, we want to understand the essential image of the Eq functor!

Grothendieck's school has very general machinery for answering this exact question!

Grothendieck's school has very general machinery for answering this exact question! Given an adjunction $(L: \mathcal{A} \rightarrow \mathcal{X}) \dashv(R: \mathcal{X} \rightarrow \mathcal{A})$ can we tell when an X is isomorphic to $L A$ for some A ?

Grothendieck's school has very general machinery for answering this exact question! Given an adjunction $(L: \mathcal{A} \rightarrow \mathcal{X}) \dashv(R: \mathcal{X} \rightarrow \mathcal{A})$ can we tell when an X is isomorphic to $L A$ for some A ?

The keyword is Comonadicity of the adjunction.

Objects of the form LA always come with a LR-coalgebra structure.

Objects of the form LA always come with a LR-coalgebra structure.
So $L: \mathcal{A} \rightarrow \mathcal{X}$ factors as

Objects of the form LA always come with a LR-coalgebra structure.
So $L: \mathcal{A} \rightarrow \mathcal{X}$ factors as

Objects of the form LA always come with a LR-coalgebra structure.
So $L: \mathcal{A} \rightarrow \mathcal{X}$ factors as

Definition

We say $L \dashv R$ is Comonadic if $L: \mathcal{A} \rightarrow \mathcal{X}_{L R}$ is an equivalence.

Objects of the form LA always come with a LR-coalgebra structure.
So $L: \mathcal{A} \rightarrow \mathcal{X}$ factors as

Definition

We say $L \dashv R$ is Comonadic if $L: \mathcal{A} \rightarrow \mathcal{X}_{L R}$ is an equivalence.
That is, if we can recognize objects of the form $L A$ as precisely those objects X admitting an $L R$-coalgebra structure!

So if we can show that $\mathrm{Eq} \dashv U$ is comonadic, we'll be done!
${ }^{1}$ As I understand, the construction is originally due to Pitts, but wente unpublished

So if we can show that $\mathrm{Eq} \dashv U$ is comonadic, we'll be done!
Thankfully, there's a key theorem that lets us check exactly this!
${ }^{1}$ As I understand, the construction is originally due to Pitts, but wente unpublished

So if we can show that $\mathrm{Eq} \dashv U$ is comonadic, we'll be done!
Thankfully, there's a key theorem that lets us check exactly this!
Theorem (Beck '60s)
$L \dashv R$ is comonadic if and only if

- L reflects isomorphisms
- L preserves "equalizers of coreflexive pairs"

[^0]So if we can show that $\mathrm{Eq} \dashv U$ is comonadic, we'll be done!
Thankfully, there's a key theorem that lets us check exactly this!
Theorem (Beck '60s)
$L \dashv R$ is comonadic if and only if

- L reflects isomorphisms
- L preserves "equalizers of coreflexive pairs"

These conditions sound scarier than they are, and with the explicit definition of $\operatorname{Eq}(-)$ in a paper of Bunge-Carboni ${ }^{1}$ it's not so hard to just explicitly check these conditions.

[^1]So we can recognize the algebraic theories as those essentially algebraic theories of the essential image of $\mathrm{Eq}(-)$.

So we can recognize the algebraic theories as those essentially algebraic theories of the essential image of $\mathrm{Eq}(-)$. Moreover, we can recognize those as the essentially algebraic theories which admit a certain coalgebra structure.

So we can recognize the algebraic theories as those essentially algebraic theories of the essential image of $\mathrm{Eq}(-)$. Moreover, we can recognize those as the essentially algebraic theories which admit a certain coalgebra structure.

Pedicchio and Wood push this further, and give a concrete description of the categories we're interested in! The key definition is that of "enough effective projectives".

What's Next?

What's Next?

FinLim	\approx essentially algebraic
FinProd	
Eq	
	\approx algebraic

What's Next?

What's Next?

$$
\text { SymMon } \quad \approx \text { props }
$$

I've spent some time thinking about this, and it's harder because the left adjoint is a bit brutal.

What's Next?

I've spent some time thinking about this, and it's harder because the left adjoint is a bit brutal.

But, using an explicit construction that Todd Trimble posted on the nlab forums, it should be possible to play the same game. But there's still lots of details to check.

If you want to read more, you'll likely be interested in

- Adámek, Vitale, and Rosicky's Algebraic Theories
- Borceux's Handbook of Categorical Algebra (Vol 2)
- Bunge and Carboni's The Symmetric Topos
- Palmgren and Vicker's Partial Horn Logic and Cartesian Categories and of course
- Pedicchio and Wood's A Simple Characterization of Theories of Varieties

Thank You！

$$
4 \text { ロ } \downarrow \text { 岛 鸟 三ㅗ }
$$

[^0]: ${ }^{1}$ As I understand, the construction is originally due to Pitts, but wente unpublished

[^1]: ${ }^{1}$ As I understand, the construction is originally due to Pitts, but wente unpublished

