
Modal Logic

A Practical and Rigorous Introduction

Adam Bjorndahl and Chris Grossack

November 22, 2019

2

Contents

I Core Concepts 7

1 Introduction 9
1.1 A Puzzle . 11
1.2 Applications . 15

2 Syntax and Semantics 17
2.1 Introduction . 17
2.2 Syntax: The Basic Modal Language 18

2.2.1 Extensions of the Basic Modal Language 20
2.3 Semantics: Kripke Frames and Models 24

2.3.1 Relational Structures 24
2.3.2 Frame Properties 25
2.3.3 Operations on Relational Structures 30
2.3.4 Models . 33
2.3.5 Kripke Semantics 35
2.3.6 An Example Proof 37
2.3.7 Interpretations 37

2.4 Provability: System K 40
2.4.1 Deduction Systems 41
2.4.2 System K . 42
2.4.3 Some Example Derivations 43

2.5 Other Deduction Systems 46

3 Soundness and Completeness 51
3.1 Introduction . 51
3.2 The Soundness Theorem 52

3

4 CONTENTS

3.3 Completeness . 54
3.4 Maximally Consistent Sets 55
3.5 Completenesss in Other Modal Logics 61
3.6 Definability . 63

3.6.1 Transitivity . 64
3.6.2 Definability . 64

4 Bisimulations and Operations on Frames 67
4.1 Introduction . 67
4.2 Bisimulations . 70
4.3 Generated Submodels 74
4.4 Filtration . 75
4.5 Unraveling . 82
4.6 MultiAgent Logic . 85
4.7 Proving Inexpressibility 85
4.8 Finite Model Property 86

II Extended Topics 91

5 Topological Semantics 93
5.1 Introduction . 93
5.2 Topology . 93

5.2.1 Examples . 95
5.2.2 Continuous Maps 101

5.3 Topological Semantics 103
5.4 Soundness . 107
5.5 Completeness . 109
5.6 Dynamic Topological Logic 113

5.6.1 S4C . 113
5.6.2 True DTL . 114

6 Propositional Dynamic Logic 117
6.1 Intro . 117
6.2 Syntax . 117
6.3 Semantics . 120
6.4 Proof Theory . 122

6.4.1 Soundness and Completeness 123

CONTENTS 5

add a preface, and acknowledge everyone who’s helping revise

6 CONTENTS

Part I

Core Concepts

7

Chapter 1

Introduction

When talking about the real world, we often use modifiers to subtly
change the meaning of what we are saying. To give a purely linguistic
example, consider the sentences “It will rain tomorrow” and “It might
rain tomorrow”. The first expresses certainty, whereas the second
expresses uncertainty. Indeed, we could also use “Valerie knows it is
raining” and “Valerie thinks it might be raining” in a similar way.
The first sentence expresses an amount of certainty that the second
sentence lacks. How can somebody judge the truth of a sentence like
this? In every case, the primitive idea “It is raining” is a very easy
thing to check the truth of. However, “Valerie knows it is raining”
might be very hard to prove. Modal Logic takes up the study of these
modifiers, officially called Modalities, and gives a formal framework
for reasoning about how they change the truth of a sentence. Of
course, modalities show up in many guises in addition to the linguistic
examples above. Modalities are also prevalent in branches of philosophy,
mathematics, and computer science, so let’s talk about some examples.

In programming language theory, a branch of computer science
dedicated to the design of programming languages, it is often desirable
to have a type system which guarantees certain correctness properties
of code before the it is executed. The ever-elusive dream in this field is
to have a programming language where if your code compiles, it must
be correct. Unfortunately, this often requires a lot of verbosity on the
part of the programmer, and balancing programmer quality-of-life with

9

10 CHAPTER 1. INTRODUCTION

guaranteed program safety is a big topic in the area. Side effects, the
things a code does to actually interact with a world, are particularly
difficult to formalize in a type system. Thankfully, there has been a lot
of research recently in the use of modalities to model these side effects.
There is also reserach into using Temporal Logic to model program
execution. This allows us to automatically prove certain programs
match their specification, in other words, to prove that our code is
correct automatically.

In philosophy, as in linguistics, it is useful to take possibly ambiguous
sentences and make them precise. This allows us to reason formally
about the truth of arguments. However, many arguments in philosophy
use concepts like knowledge and obligation and morality. In trying to
make arguments involving these terms, it is often useful to rephrase
them in the language of modal logic. Here, there is no ambiguity, and
so it is immediately apparent whether a proof is actually a proof.

In mathematics, modality finds uses primarily in mathematical
logic, though its uses are often varied and creative. In understanding
Gödel’s seminal incompleteness theorems, an important notion is that
of provability. Surprisingly, the notion of being provable is a modality,
and this has shed some light on Gödel’s theorems, and related ones.
Modalities also arise in topology and in a type theoretic foundation for
mathematics as closure operators, and these modalities are intimately
related. This is a reflection of a much deeper link between geometry
and logic, related to category theory, which is very efficiently studied
via these related modalities. In Homotopy Type Theory, modalities
are used to represent truncation, a way of simplifying a complicated
infinite structure by only looking it its first finitely many substructures.
Finally, set theoretic forcing, the act of custom building a set theoretic
universe to prove a property about the axioms of set theory itself, has
modal content.

Of course, we still have not said what makes something a modality.
The characterizing feature is that modalities are not truth functional.
As an example, let K be the modality “Valerie knows”. Thus, if ϕ
means “it is raining”, then Kϕ means “Valerie knows it is raining”. A
truth functional operator only depends on the truth value of its input.
In that way, it is a function of the truth value of its input. So there are
only four truth functional operators of one input: Tϕ which is always
true, Fϕ which is always false, Iϕ which is true whenever ϕ is, and

1.1. A PUZZLE 11

Nϕ which is true whenever ϕ isn’t. Modalities are useful because they
care about more than just the truth value of their input. For instance,
If ϕ is “it is raining by Valerie” and ψ is “it is raining in Bermuda”,
and let’s say they’re both true. If Valerie is not in Bermuda, then Kϕ
is true, but Kψ might not be, even though ϕ and ψ are both true. It
is incredibly common for the truth of something to depend on more
than just the truth of its input, and this is the reason for the ubiquity
of modalities in certain areas of study.

This book is meant as a rigorous treatment of Modal Logic, formalized
mathematically with Kripke Semantics. We will prove fundamental
results for a variety of modal logics, and ideally have fun doing so.
Typically examples will come from Epistemology (where modal formulas
are interpreted as what Valerie knows) or Temporal Logic (where
modal formulas are interpreted as what the future will be like) but
there will be others along the way. At the end, we will work with two
modal logics which are currently the subject of active study. With all
this said, let’s dive in!

1.1 A Puzzle

Three people are sitting in a room, each wearing either a
red or blue hat.

A moderator comes in and says “At least one of you is
wearing a red hat.”

Each player can see the other players’ hats, but not their
own.

Players then take turns either announcing their hat color
(if they know it), or announcing that they do not know
their hat color. The first person to know their hat color
wins!

Will this game always end? Further, can everyone figure
out what their hat color is eventually?

Somewhat surprisingly, the game always has a winner! Though
it is not possible, in general, for every player to know their own hat
color. Perhaps more surprisingly, the moderator’s announcement is
extremely important! Let’s talk about why.

12 CHAPTER 1. INTRODUCTION

8 bubbles labeled RRR, RRB, RBR, etc.

Missing

figure

8 bubbles with edges labeled A, B, and C connecting
appropriate bubbles

Missing

figure

First, let’s translate the game into logical terms. Let’s name the
three players Alyss, Bob, and Cam. Then there are 8 “possible worlds”,
one for each assignment of hats to players. We will denote the world
where Alyss’s hat has color X, Bob’s has color Y, and Cam’s has color
Z by XY Z. For example, the world RRB is the world where Alyss
and Bob have red hats, and Cam has a blue hat.

We will add three modalities, Â, B̂, and Ĉ representing what Alyss,
Bob, and Cam consider possible. For example, Alyss cannot tell RRR
and BRR apart. So if the real world is RRR, Alyss will consider it
possible that BRR is the real world. Symmetrically, if BRR is the real
world, Alyss will consider it possible that RRR is the real world. We
can represent this by adding edges between worlds which Alyss, Bob,
and Cam cannot distinguish.

Now we are equipped to solve the problem. The above graph has
a node for every possible world, and we will remove nodes from the
graph as we learn more information about the world. For example,

1.1. A PUZZLE 13

7 bubbles, labeled edges. BBB and adjacent edges have
been removed

Missing

figure

6 bubbles, RBB has been removed

Missing

figure

since the moderator announced that BBB is not a possible world, we
can consider the following graph instead.

So now, let’s start with Alyss. If she sees two blue hats, then she
knows she must be wearing a red hat. This is modeled in the above
diagram by the lack of Â arrows coming out of the RBB vertex. If
instead, she does not see two blue hats, then she does not know what
hat she has (modeled by the fact that every other world does have a

Â edge). So she passes.

The fact that she passes, however, tells Bob and Cam that they
aren’t living in RBB, because if they were, then Alyss would not have
passed! So we can update our model of what the possible worlds are
to exclude RBB:

Next is Bob’s turn. If he sees Alyss wearing red and Cam wearing
Blue, then he knows he is in the RRB world. Again, this is because
the B̂ edges show Bob’s uncertainty, and a lack of B̂ edges at the RRB
world means Bob can be sure his hat color is red. Similarly, if Bob

14 CHAPTER 1. INTRODUCTION

4 bubbles, remove RRB and BRB

Missing

figure

sees two blue hats, then he knows his hat must be red, because the
BRB world has no B̂ edge.

Then, if Bob passes, the other players know that they are not in
RRB or BRB, since otherwise Bob would have won. They update
their model of the possible worlds to match:

Finally, it is Cam’s turn. But there are no Ĉ edges left! So no
matter what the state of the world is, Cam knows what their hat color
must be! The game stops.

Notice, though, that Alyss and Bob are still uncertain about what
world they are in. Even though Cam knows, Alyss and Bob are unable
to determine their hat color. It was also extremely important that a
moderator announce BBB was not a possible world, as this small bit
of knowledge is what added the imbalance that made it possible to
gain any knowledge at all.

Ex. 1.1 —

Play the hat game with Alyss, Bob, and Cam using

a. RRR as the real world

b. RBR as the real world

c. RBB as the real world

1.2. APPLICATIONS 15

1.2 Applications

This is all well and good in the abstract, and I love puzzles as much
as anybody else does. However, one would like to know that there are
applications to more substantial problems. Which begs a question:

Why should we care?

Even though we outlined a great deal of examples at the start
of this chapter, I suppose we can take a moment to give an explicit
example.

It is often the case in Computer Science that we have code which
may or may not be correct. Testing code is important, but the only
way to be truly sure that your code is correct is to prove that it is
correct. But proving things is time consuming, so it would be nice if
we could automate the process of proving certain programs correct.
To that end, consider the following program:

de f f a c t (n) :
r e t = 1
whi le n > 0 :

r e t = r e t ∗ n
return r e t

What does it mean for this program to be correct? We need to
have a specification of what the program should do to be able to prove
that the program actually does it. Let’s introduce that specification:

de f f a c t (n) :
#@Requires : n >= 0
#@Ensures : f a c t (n) = n !

r e t = 1
whi le n > 0 :

r e t = r e t ∗ n
n = n−1

return r e t

Now a human can prove (by induction on n) that when n ≥ 0,
fact(n) = n!, and so the program fact matches its specification.
That is, it is correct. But what does this have to do with modal logic?

16 CHAPTER 1. INTRODUCTION

Worlds with ret and n in Z2, with arrows where relevant

Missing

figure

As before, we introduce a set of possible worlds, this time corresponding
to the various states the program execution might be in. We add edges
from one world to another according to how what line of the program
we are on. If a world reads a return ret instruction, then we show
no edges, but we circle the world to show the computation has ended.
1

The specification for this program says that if we start at a world
where n ≥ 0, then we will eventually find a world where we return,
and further ret will be n! in that world. We will see (in Chapter 6)
how this can be checked by a computer at compile time. This means
the programmer does not have to prove their code correct to know
that it is – we offload this (routine) work to the compiler. Obviously
this will not work for every program, so there is some care needed.
The fact that we can do it at all, though, is both cool and useful.

The way we will prove this, though, is by creating a modal logic
which models program execution. Then, using general results developed
in the rest of the text, we will be able to get the above result for free!

1This construction is somewhat ad-hoc so that we don’t have to get into the
details of Propositional Dynamic Logic, which will be the subject of Chapter 6.

Chapter 2

Syntax and Semantics

2.1 Introduction

Central to the study of logic is the differentiation between formulas,
which are strings of symbols, and truth, which is a judgement we can
make about formulas. As a simple example, consider the sentence

∀x.∃y.x+ y = 0.

If we take our domain to be N, then the sentence is false. If we instead
work over Z, the same sentence is true.

In logic, we take this observation to an extreme, and we define
complementary notions of Syntax and Semantics. The syntax defines
the symbols which we are allowed to use, and which strings of symbols
are meaningful. The string +∀0, for instance, uses the same symbols
as the sentence above, but is not meaningful. A meaningful string of
symbols is called a Formula. We have rules of syntax which make
precise which strings of symbols are formulas. Dually, the semantics
describe which formulas are true. As the above example shows, different
formulas are true in different settings. Because of this, we must keep
track of a Model, which gives us a way to interpret our formulas.
Keep in mind that just as in the above example, the truth or falsity
of a formula depends on the model in which we are interpreting it!

17

18 CHAPTER 2. SYNTAX AND SEMANTICS

Of course we often think of things that are true as the things
which have been proven. We formalize the notion of a proof with
a Deduction System. A deduction system is a set of axioms and
inference rules. The axioms are sentences which we say are provable by
default, and the inference rules give ways of taking previously proven
formulas and using them to prove new formulas. Much of the book
will be dedicated to showing that, for a particular deduction system,
a formula is provable if and only if it is true in every model.

In this chapter, we will introduce the syntax and semantics of a
basic modal logic with one modality: � (pronounced “box”). We
also introduce a deduction system, called System K, whose provable
statements (called Theorems) are exactly the formulas which are
true in every model. In the exercises, you will play with a simpler
(non-modal) logic (Classical Propositional Logic, or CPL) and a more
complicated modal logic, Multi-Agent Epistemic Logic, which is
what we used in the introduction to make sense of the red and blue
hat game.

2.2 Syntax: The Basic Modal Language

The Basic Modal Language is defined recursively by the following
Grammar :

ϕ,ψ = p (primitive propositions)

| ϕ ∧ ψ (conjunction)

| ¬ϕ (negation)

| �ϕ (modality)

This means that p is always a formula. It is the base case of
our definition. Inductively, if ϕ and ψ are formulas which have been
defined, we can also define ϕ ∧ ψ, ¬ϕ, and �ϕ. Here p is called
a Primitive Proposition. These are the basic things we wish to
examine. We consider a set PROP from which these propositions come.
We might consider PROP = {“it is raining”, “it is sunny”, “it is cloudy”}.
In this case, we can form sentences such as:

2.2. SYNTAX: THE BASIC MODAL LANGUAGE 19

• ¬“it is raining” (it is not raining)
• “it is cloudy” ∧ “it is raining” (it is cloudy and it is raining)
• �“it is sunny”

� can be interpreted in a number of ways based on what one wishes
to study. Some common interpretations of this last example (and their
associated fields) are:

• “Valerie knows that it is sunny” (epistemic logic)
• “It will always be that it is sunny” (temporal logic)
• “It is necessary that it is sunny” (alethic logic)

We also have common abbreviations:

ϕ ∨ ψ ¬(¬ϕ ∧ ¬ψ) (disjunction)

ϕ→ ψ ¬(ϕ ∧ ¬ψ) (implication)

ϕ↔ ψ (ϕ→ ψ) ∧ (ψ → ϕ) (bi-implication)

♦ϕ ¬�¬ϕ (interpretation varies)

These abbreviations have the below interpretation. A reader unfamiliar
with these abbreviations should convince themself that the abbreviations
actually correspond to the interpretation we give here.

• “it is sunny” ∨ “it is cloudy” (it is raining or it is cloudy)
• “it is raining”→ “it is cloudy” (if it is raining then it is cloudy)
• “it is raining” ↔ “it is cloudy” (it is raining if and only if it is

cloudy)
• ♦“it is sunny” (interpretation varies)

The interpretation of ♦“it is sunny” depends on the chosen interpretation
of �. For example, it could mean any of the following:

• “Valerie considers it possible that it is sunny” (epistemic logic)
• “It will at some point be that it is sunny” (temporal logic)
• “It is possible that it is sunny” (alethic logic)

20 CHAPTER 2. SYNTAX AND SEMANTICS

A linear program execution where each world is a ϕ
world until there is a ψ, ¬ϕ world.

Missing

figure

2.2.1 Extensions of the Basic Modal Language

There are other, more expressive modal logics, too! Consider the
following grammar, which defines the language of Linear Temporal
Logic (LTL):

ϕ,ψ = p (primitive propositions)

| ϕ ∧ ψ (and)

| ¬ϕ (not)

| Nϕ (Next)

| ϕUψ (Until)

This logic allows us to discuss properties which change over time,
and to model when certain properties might be true in the future. This
is useful in modeling program excution, where we want to know that
certain ”failure” states are never reached.

We have the same basic setup, but we have two modalities now: N
and U. Nϕ holds if, in the next program state, ϕ holds. We also have
a binary modality, where ϕUψ is true if and only if “ϕ holds until ψ
holds”. That is, in every future program state, ϕ is true. However,
once ψ becomes true, all bets are off, and ϕ is allowed to be false again.
You should be thinking of the picture in figure 2.2.1

When reasoning about knowledge, it is often the case that you
have multiple people whose knowledge is important. Say you are
modelling a poker game, and you want to be able to express that
one person knows that another person knows that a third person is

2.2. SYNTAX: THE BASIC MODAL LANGUAGE 21

A frame with multiple relations

Missing

figure

bluffing! That’s a lot of expressive power for a language to have, but
it is still well within our grasp.

Given a set A of agents, we define a grammar for Multi-Agent
Epistemic Logic as follows:

ϕ,ψ = p (primitive propositions)

| ϕ ∧ ψ (and)

| ¬ϕ (not)

| Kaϕ (Agent a knows)

Here we have added a Ka for every a ∈ A, so we can express
formulas like those from the introduction. In this setting we typically
denote ¬Ka¬ϕ by K̂aϕ, read as “Agent a considers ϕ possible”.

We also have to level up our models to make sense of these new
formulas. Now instead of one relation R, our frames have a relation
Ra for every a ∈ A. We then define our semantics exactly like before,
but one relation at a time (see figure 2.2.1).

22 CHAPTER 2. SYNTAX AND SEMANTICS

Ex. 2.1 —

Consider the following grammar
(where n stands for any of 0, 1, 2, 3. . .):

p, q, r = n (natural numbers)

| t (true)

| f (false)

| p+q (addition)

| if p then q else r (conditional)

Which of the following are syntactically correct?

a. 5 + 3

b. 6 + 2 + 1

c. 5 + t

d. 3 ∗ 4

e. if 5 then f

f. if 5 + 3 then f else 2 + 1

g. 3 + if t then 2 else 4 + 1

Ex. 2.2 —

a. Write down a grammar for a language which can express

• primitive propositions
• conjunction
• negation
• Valerie Knows
• Valerie Believes

b. Translate some sentences about belief and knowledge from english

2.2. SYNTAX: THE BASIC MODAL LANGUAGE 23

Ex. 2.3 —

Translate the following sentences between Epistemic Logic and English,
assuming any claims about which activities are fun are primitive.

a. Valerie knows modal logic is fun.

b. Valerie knows that if modal logic is fun, then so is mathematics.

c. If computer science is fun, then Valerie thinks it might be.

d. Valerie doesn’t know that modal logic is fun.

e. Valerie knows that doing homework isn’t fun.

Ex. 2.4 —

a. Explicitly write down a grammar for Multi-Agent Epistemic
Logic with 3 agents. This language should be able to express

• primitive propositions
• conjunction
• negation
• Agent 1 knows
• Agent 2 knows
• Agent 3 knows

b. Translate some sentences from MAEL to english

c. Translate some sentences from english to MAEL

Ex. 2.5 —

Translate the following sentences between LTL and English, assuming
any claims about the weather are primitive. Let’s say that each
time-step is one day, so that Nϕ means “Tomorrow, ϕ holds”

a. It will be sunny until it is raining.

b. If it is windy, then tomorrow it will be cloudy.

c. If it snows tomorrow, then it will snow everyday until it is
sunny.

d. As long as it is cold and windy, it will be rainy.

e. “It is sunny” U “It is cloudy”

f. N “It is windy”

g. N (“It is hot” U “It is raining”)

24 CHAPTER 2. SYNTAX AND SEMANTICS

Ex. 2.6 —
Create a grammar which allows us to express statements about what
will happen tomorrow and what Valerie knows. Use it to formalize the
following sentence:

If Valerie knows it will rain tomorrow, she will bring an
umbrella.

(Assume that “Valerie carries an umbrella”, as well as “It is raining”
are primitive.)

2.3 Semantics: Kripke Frames and Models

Now we have a language which we can use to write down formulas.
However, just as with ∀x.∃y.x+y = 0, the truth of these formulas will
depend on how we interpret each of the symbols. The interpetation
of the language we choose is called the Semantics of our language.

There are many ways to interpret the basic modal language, though
we will spend most of this book discussing Kripke Semantics, which
is the classically used and studied semantics. Kripke Semantics are
phrased in terms of Relational Structures, and so we will take a
quick detour into the world of relations. Here we will encounter some
fundamental examples and definitions which will serve us well for the
rest of the book.

In chapter 5 we will describe another family of models in which we
can interpret modal formulas, which will give rise to a Topological
Semantics for modal logic. For now, however, let us continue with
the definition of a Relational Structure:

2.3.1 Relational Structures

Definition 2.1. A Relational Structure, or Frame, F = (W,R) is
a set W , and a relation R ⊆W ×W

We frequently refer to x ∈W as a world or state. We will also abuse
notation, and write x ∈ F when we mean x ∈ W for F = (W,R). We
write R(x, y), or xRy if (x, y) ∈ R, which is to say that x ∈ W is
related to y ∈W by R. We will often say that “x sees y” if xRy, using
the intuition that every world can only see in some directions, and can

2.3. SEMANTICS: KRIPKE FRAMES AND MODELS 25

A kripke frame, W = w,x,y,z, R = (x,x), (x,y), (y,z)

Missing

figure

A kripke frame, W = N, R = Successor

Missing

figure

only see one “step” away from itself. Note that if x sees y, that does
NOT mean y sees x. Finally, we write R(x) = {y ∈W | R(x, y)}

One can visualize this relation as a directed graph, whose vertices
are given by W , and where there is an edge from x to y if and only if
xRy. There are examples throughout this section.

2.3.2 Frame Properties

There are a number of properties a relation R ⊆ W ×W can have.
Indeed, we will show that many of these properties are expressible
by formulas in the basic modal language. The interplay between
properties of relations and modal formulas will discussed in depth
in section 3.6, however we must first familiarize ourselves with these
properties. We appologize for the rapid fire barrage of definitions
the reader is about to encounter, but we want to make sure that we
formally introduce everything we might need.

26 CHAPTER 2. SYNTAX AND SEMANTICS

A kripke frame, W = Z, R = ≤ (show the transitive
arrows too)

Missing

figure

The = relation on 7 worlds

Missing

figure

The mod 3 relation on Z - say from −4 to 4?

Missing

figure

2.3. SEMANTICS: KRIPKE FRAMES AND MODELS 27

Branching time

Missing

figure

Definition 2.2. R ⊆W ×W is called Reflexive if ∀x ∈W.xRx.

In a reflexive relation, every world sees itself. For example, = is
reflexive, as x = x. A less trivial example might be congruence “mod
3”. Here we say that x ∼3 y if and only if 3 | x − y. Since 3 | 0, we
see x ∼3 x. We might also take the “same family” relation on people.
Since any one person is in the same family as themself, this relation is
reflexive. Notice x ≤ y is reflexive, while x < y isn’t.

Definition 2.3. R ⊆W×W is called Symmetric if ∀x, y ∈W.xRy ⇐⇒
yRx.

In a symmetric relation, x sees y exactly when y sees x. Graph
theoretically, a symmetric relation corresponds to an undirected graph,
compared to the directed graphs we normally work with. =, again,
is symmetric (indeed if x = y, then y = x too). A slightly more
whimsical relation is the “handshake” relation. If we have a room of
business people P , then we can put p1Rp2 whenever p1 and p2 have
shaken hands. Clearly this relation is symmetric, since if p1 has shaken
p2’s hand, then p2 must have also shaken p1’s hand. As a non-example,
≤ is not symmetric, since 3 ≤ 5, but 5 6≤ 3.

Definition 2.4. R ⊆W ×W is called Transitive if ∀x, y, z ∈W.xRy
and yRz implies xRz.

The classic example of a transitive relation is ≤. If x ≤ y and
y ≤ z, then x ≤ z. Another way of phrasing this is that if x sees y,
then x sees everything y does. Note = is also transitive, since x = y
and y = z implies x = z. As another example, consider the “branching
time” model shown in 2.3.1.

28 CHAPTER 2. SYNTAX AND SEMANTICS

Definition 2.5. R ⊆ W × W is called an Equivalence Relation
if it is reflexive, symmetric, and transitive. Equivalence relations are
often written as ∼.

An equivalence relation is a relation which “looks like equality”.
That is, we can group W into clumps based on xRy, and we will
have xRy if and only if they fall into the same clump. This will be
extremely useful in the future when we talk about Filtration in section
4.4. Consider P , the set of all people, with the relation p1 ∼ p2 iff
p1 and p2 have the same birthday. As a slightly mathier example,
consider the “congruent mod 3” example from earlier.

In an antisymmetric relation, the only way for two worlds to see
each other is for them to actually be the same. Consider ≤ again. If
x ≤ y and y ≤ x, then x = y.

Definition 2.6. A relation R ⊆ W ×W is a Partial Order if it is
reflexive, transitive, and antisymmetric. This last condition says that
xRy and yRx can only be true if x = y. Partial Orders are often
denoted �.

Definition 2.7. If �⊆ W ×W is a partial order with the following
bonus property: ∀x, y.(x � y or y � x)

Then � is called a Total Order

Orders, like it says on the tin, let us put events in an order. If w1

comes before w2, we write w1 � w2. It makes sense for these to be
transitive, beacuse if Mozart came before The Beatles, and The Beatles
came before Louis Cole, it stands to reason Mozart came before Louis
Cole. Reflexivity is a bit more subtle, since it doesn’t necessarily make
sense to say Debussy came before Debussy. However this is the view
that mathematicians have adopted. It doesn’t make much difference,
though, since we can define x ≺ y as x � y ∧ x 6= y to avoid this
situation if we want to.

A total order lets us put events in an order in such a way that for
any two events, one definitely came first. Think about timelines, for
example. For any two composers, we can always say which of them
started composing first. There is no ambiguity.

With a partial order, however, we can’t always say which event
came first. Consider a branching timeline, where every decision splits

2.3. SEMANTICS: KRIPKE FRAMES AND MODELS 29

the timeline in two. In a timeline exactly like ours, but where Beethoven
never became a composer, music would have developed completely
differently. Does it make sense to say that a band in their timeline,
which doesn’t exist in ours, “came before” a band which exists in ours
but not theirs? Partial Orders reflect this ambiguity, by allowing x � y
to be undefined sometimes.

You are already familiar with a number of total orders. (Z,≤) and
(R,≤) are both total orders. One partial order is ⊆. Consider 2X , the
set of subsets of X. Then ⊆ defines a partial order on 2X . Note for
A,B,C ⊆ X: A ⊆ A (so ⊆ is reflexive), A ⊆ B and B ⊆ A implies
A = B (so ⊆ is antisymmetric), and if A ⊆ B and B ⊆ C then A ⊆ C
(so ⊆ is transitive).

Definition 2.8. A relation R ⊆ W ×W is called Serial if R(x) is
nonempty for every x.

Serial relations say that you can never “get stuck” as you move
around the worlds of a model. No matter where you are, there is
always an edge to follow. Almost all of the examples we have seen so
far are serial. As a non-example, consider figure 2.3.1. w and z are
not related to any other world, and so the frame is not serial. Notice
y is related to z, however.

Finally, we give the definitions for classes of frames. That is, a
collection1 of frames with some property. Much of this book will deal
with the connection between certain classes of frames and certain kinds
of modal logics, but we cannot discuss the connections before we have
some definitions in place.

Definition 2.9. Call is the class of all frames.

Crefl is the class of reflexive frames.

Ctrans is the class of transitive frames.

Crefl,trans is the class of all reflexive, transitive frames.

Cpos is the class of all posets.

Cserial is the class of serial frames.

1which might be bigger than a set, for those with some set theoretic background

30 CHAPTER 2. SYNTAX AND SEMANTICS

A frame with a bolded R-path between 2 worlds

Missing

figure

2.3.3 Operations on Relational Structures

Oftentimes we will want to take a given relation and modify it slightly
to give it extra properties. The most useful are defined here:

Definition 2.10. Given a relationR ⊆W×W , its Reflexive Closure
is the relation R′ = R ∪ {(w,w) | w ∈W}.

This one is pretty obvious. We have a relation, but we want it to
be reflexive. Let’s just add in all the stuff it takes to be reflexive. As
an example, the reflexive closure of < is ≤.

Definition 2.11. As a kind of auxiliary definition, an R-path from
x to y is a chain xRz0Rz1Rz2R . . . RznRy.

In figure 2.3.3, the bolded path is anR-path, since we see xRz0Rz1Rz2Ry.

Definition 2.12. Given a relation R ⊆ W × W , its Transitive
Closure R+ is given by xR+y if and only if there is an R-path from
x to y. A slightly more formal definition might be

xR+y ⇐⇒

{
xRy

xRz and zR+y

This one is well motivated – it makes sense that we might want to
make a relation transitive. However it might be less clear that this new
relation is actually transitive. Luckily, this is the content of exercise
2.13. As an example, the transitive closure of +1 from 2.3.1 is <. This
is because x < y ⇐⇒ xSz1Sz2 . . . znSy, where xSy means x+ 1 = y.

2.3. SEMANTICS: KRIPKE FRAMES AND MODELS 31

A frame and its transpose

Missing

figure

Oftentimes we will want to do both of these. In fact, we want to
do it so often it gets its own name:

Definition 2.13. Given a relationR ⊆W×W , its Reflexive-Transitive
Closure R∗ is given by first taking its transitive closure, then taking
its reflexive closure.

The reflexive transitive closure of +1 is ≤.

Definition 2.14. Given a relation R ⊆W ×W and a subset X ⊆W ,
define the Restriction of R to X by R � X = R ∩X ×X.

Intuitively, restricting a relation corresponds to only looking at
certain worlds of W . If we ignore all the worlds which are not in X,
we cannot talk about edges between these worlds. However, we want
to keep as much information as possible, so any edge we can keep,
we want to. This will be important when we talk about Generated
Submodels in section 4.3.

Definition 2.15. Given a relation R ⊆W ×W , its Transpose 2 RT

is defined as xRT y if and only if yRTx.

The transpose of a relation lets us move backwards along edges.

2RT is sometimes called Rop

32 CHAPTER 2. SYNTAX AND SEMANTICS

Ex. 2.7 —
Say whether the following relations are Reflexive, Transitive, Symmetric,
or Serial. Also specify if they are a Partial or Total Order, or an
Equivalence Relation.

a.

b.

c.

d.

e.

Ex. 2.8 —
Compute the reflexive, transitive, and reflexive-transitive closures of
the following relations.

a.

b.

c.

Ex. 2.9 —
A partition of a set X is a family of nonempty subsets Ai ⊆ X such
that Ai ∩ Aj = ∅ and

⋃
Ai = X. Thus every x ∈ X is in exactly one

Ai.

a. Show every partition induces an equivalence relation ∼ where
x ∼ y if and only if x and y are in the same Ai

b. Show every equivalence relation ∼ induces a partition of X.

Ex. 2.10 —
(n1, d1) ∼ (n2, d2) ⊆ Z × N ⇐⇒ n1(d2 + 1) = n2(d1 + 1) is eq rel.
Relate to Q.

Ex. 2.11 —
The only relation which is symmetric and antisymmetric is =

Ex. 2.12 —

Definition 2.16. A relation R ⊆ W × W is called Euclidean if
whenever xRy and xRz, we also have yRz.

Show a reflexive, euclidean relation is an equivalence relation.

2.3. SEMANTICS: KRIPKE FRAMES AND MODELS 33

Ex. 2.13 —
Prove the transitive closure of a relation is actually transitive.

Ex. 2.14 —
We can represent a relation as a matrix with 0/1 valued entries. Given
a relation R ⊆W ×W , define AR[x, y] = 1 ⇐⇒ xRy.

a. What can we say about AR if R is symmetric? What about
Reflexive? Transitive?

b. Prove ART = AR
T . That is, the matrix of the transpose of R

is the transpose of the matrix of R.

c. What must AR look like if R is a total order?

Ex. 2.15 —
We seemingly made an arbitrary choice with the reflexive-transitive
closure: We decided to first take its reflexive closure, then its transitive
closure. If we define the transitive-reflexive closure to be “first take
the reflexive closure, then take the transitive closure”, would we get
a different relation? Find a relation R in which they differ, or prove
they are always the same.

2.3.4 Models

We’ve spent a lot of time on frames and properties of relations, but it
is still unclear what these might have to do with interpreting modal
formulas. How can a frame say if �p→ q is true or false? The answer
is: it can’t. We need a little bit more information, which this section
provides.

Definition 2.17. A Kripke Model M = (W,R, v) = (F, v) is a
frame F equipped with a valuation function v : PROP → 2W , which
sends a primitive proposition to the set of worlds where it is true (as
usual, 2W = {A | A ⊆W} is the powerset of W).

As with frames, we will abuse notation and say that w ∈ M if
actually w ∈ W for M = (W,R, v). If M = (F, v), we call F the
Underlying Frame of M.

For the following examples, let PROP = {p, q} Each world is tagged
with p or q, based on the valuation. If w ∈ v(p), then we write a p

34 CHAPTER 2. SYNTAX AND SEMANTICS

M1, W = w,x,y,z, R = (x,x), (x,y), (y,z), p worlds are
x,y, q worlds are w,x,z

Missing

figure

M2, W = a,b,c, R = (a,a), (b,b), (c,c), (a,b), (b,c),
(a,c), p worlds are a b, q worlds are b c

Missing

figure

2.3. SEMANTICS: KRIPKE FRAMES AND MODELS 35

next to w, likewise for q. This gives us a way of saying “w thinks that
p is true.” The next obvious question is to ask “How can we know if
w thinks that ϕ is true?”

2.3.5 Kripke Semantics

In modal logic, we interpret formulas at a particular world w ∈ M.
Thus, each world is a sort of microcosm of CPL (the logic of just ∧
and ¬), and � will allow us to see what nearby worlds think.

To that end, for w ∈ M = (W,R, v), we recursively define w � ϕ
(read as “w satisfies ϕ”, or “w thinks that ϕ is true”) as follows:

(M, w) � p ⇐⇒ w ∈ v(p)

(M, w) � ¬ϕ ⇐⇒ (M, w) 6� ϕ
(M, w) � ϕ ∧ ψ ⇐⇒ (M, w) � ϕ and (M, w) � ψ

(M, w) � �ϕ ⇐⇒ ∀x ∈ R(w).(M, x) � ϕ

We will abuse notation and write w � ϕ if the model M is clear
from context. We will also occasionaly write M, w |= ϕ, dropping the
parentheses. Additionally, given a set of formulas A, we will write
M, w � A if M, w � ϕ for each ϕ ∈ A.

The valuation function says which basic propositions are true at
each world, and we can recursively say which larger formulas are true
at a given world. Notice that if a formula does not use �, then it
has the same truth value it would in propositional logic. The power
of modal logic, and indeed of �, comes from the ability to quantify
over nearby worlds. Before we go too much further, though, there are
explicit semantics for some of our common abbreviations:

Theorem 2.18. M, w � ϕ ∨ ψ ⇐⇒ M, w � ϕ or M, w � ψ

Proof.

M, w � ϕ ∨ ψ ⇐⇒ M, w � ¬(¬ϕ ∧ ¬ψ)

⇐⇒ M, w 6� ¬ϕ ∧ ¬ψ)

⇐⇒ M, w 6� ¬ϕ or M, w 6� ¬ψ
⇐⇒ M, w � ϕ or M, w � ¬ψ

�

36 CHAPTER 2. SYNTAX AND SEMANTICS

Theorem 2.19. M, w � ♦ϕ ⇐⇒ ∃x ∈ R(w).M, x |= ϕ

Proof.

M, w � ♦ϕ ⇐⇒ M, w � ¬�¬ϕ
⇐⇒ M, w 6� �¬ϕ
⇐⇒ not every x ∈ R(w) has M, x � ¬ϕ
⇐⇒ ∃x ∈ R(w).M, x 6� ¬ϕ
⇐⇒ ∃x ∈ R(w).M, x � ϕ

�

There are a number of derived concepts relating to the truth of
certain formulas at certain worlds, which we will now define.

Definition 2.20. The Theory of a world w ∈M is

Th(w) = {ϕ | w � ϕ}

Definition 2.21. The Denotation of a formula ϕ, written v(ϕ) or
JϕK is the extension of the valuation v to all formulas. That is,

v(ϕ) = JϕK = {x ∈M | x � ϕ}

Definition 2.22. We say that a model M Validates a formula ϕ
(written M � ϕ) if M, x � ϕ for every x ∈M.

Similarly, we say a frame F validates ϕ if (F, v) � ϕ for every
valuation function v. That is, every model we build on F validates ϕ.
Totally expanded, this says that in every world x of every model M
we can build on F, M, x � ϕ. A strong property indeed!

We can go one stronger, though. Given a collection C of frames3,
we say C � ϕ if every F ∈ C satisfies ϕ.

Finally, given a set A of formulas, we allow ourselves to write M �
A to mean M � ϕ for every ϕ ∈ A. The definitions for F � A and
C � A are similar.

3which might be a proper class

2.3. SEMANTICS: KRIPKE FRAMES AND MODELS 37

Thus, in the models shown above:

• M1, w |= q ∧ ¬p
• M1, x |= p→ q
• M1, x |= p ∨ q
• M1, y |= �q
• M1, x |= �p
• M1, w |= �p
• M1, w |= �(p ∧ ¬p)

Notice w |= �(p ∧ ¬p), even though this is a contradiction! This is
because w does not see any worlds, and so, vacuously, every world it
sees is contradictory. You will show in exercise 2.19 that this is the
only way this may happen.

2.3.6 An Example Proof

At this point, we know enough to prove that every frame satisfies
certain properties. For example, let’s show

|= ♦(p ∨ q)↔ ♦p ∨ ♦q

Proof. Let M = (W,R, v) be a model. Let w ∈W be a world.
To show →, we may assume w |= ♦(p ∨ q), as otherwise the claim

is true vacuously. But if w |= ♦p∨q, then for some w′ ∈ R(w) we have
w′ |= p ∨ q. But then w′ |= p or w′ |= q. Say w′ |= p. Then w sees a
world modeling p, and so w |= ♦p. If instead w′ |= q, then w |= ♦q.
Either way, we have w |= ♦p ∨ ♦q.

To show ←, say w |= ♦p ∨ ♦q, as otherwise the claim is vacuously
true. Then for some w′ ∈ R(w), w′ |= p or w′ |= q. But then w′ |= p∨q
and so w |= ♦(p ∨ q). �

2.3.7 Interpretations

Now, let’s get back to why this might be useful, and discuss how these
frames actually model various situations of interest.

In an Epistemic Interpretation of the basic modal language, we say
that xRy if Valerie cannot distinguish between x and y. If she is in x,
she cannot tell if she is in x or y. Notice this implicitly places some

38 CHAPTER 2. SYNTAX AND SEMANTICS

assumptions on our frame! Surely x should be indistinguishable from
itself, after all. It also stands to reason that if Valerie cannot tell x
from y, she shouldn’t be able to tell y from x either! So we are dealing
with the class of Reflexive, Symmetric Frames.

Now if x is the “real world” and it is sunny in x, it is still possible
that Valerie doesn’t know that it is sunny. Perhaps she is inside, and
she has no way of knowing if it is sunny or cloudy outside. However, if
Valerie then looks out a window and sees the brilliant afternoon sun,
she knows that it is sunny. Why? Because now every world which she
considers possible has to take into account the sun she’s looking at.
Said more formally, after Valerie opens the window, if y ∈ R(x), then
y � Sunny. This is another way of saying x � �Sunny, and we can see
that � lines up with our intuition about knowledge (at least in this
case).

We might also consider a Temporal Interpretation of the basic
modal language. Here we consider possible words as being various
moments in time, with xRy whenever x comes temporally before y.
Again, this places some assumptions on our frames. Clearly we want
to work in the class of Partial Orders, or, if we want time to be linear,
Total Orders.

If x is the “current moment”, then we can ask what �Sunny means.
It says that at all future times y, y � Sunny. A quick way of saying
this is “henceforth Sunny”. From x onwards, it will be sunny.

Ex. 2.16 —
Identify JpK, J�qK, and J♦pK in figures 2.3.4 and 2.3.4 above.

Ex. 2.17 —
Which of the following models validates ♦(q ∨ ¬p)?
•The model in figure 2.3.4
•The model in figure 2.3.4

•
(
{0, 1}, {(0, 1), (1, 0)}, v(p) = {0}, v(q) = ∅

)
•
(
Z, {(x, x+ 1) | x ∈ Z}, v(p) = odds, v(q) = multiples of 3

)
Ex. 2.18 —
Prove that any frame (X,=) validates �p → p. That is, we have
xRy ⇐⇒ x = y. This is often called the Discrete Frame.

2.3. SEMANTICS: KRIPKE FRAMES AND MODELS 39

Ex. 2.19 —
Show that (W,R, v), w |= �(p ∧ ¬p) if and only if R(w) = ∅.

Ex. 2.20 —
Find Th(x) and Th(y) in figure 2.3.4, and Th(a), Th(b), and Th(c) in
2.3.4.

Ex. 2.21 —
Find Th(0) and Th(1) in ({0, 1}, {(0, 0), (0, 1), (1, 1)}, v) with v(p) =
{0} and v(q) = {1}.

Ex. 2.22 —
Prove every model validates ♦(p ∨ q)→ ♦p ∨ ♦q

Ex. 2.23 —
Consider the following grammar:

ϕ,ψ = xi (primitive propositions)

| ϕ ∧ ψ (and)

| ¬ϕ (not)

This grammar defines the syntax for Classical Propositional Logic
(CPL), which is the basis for the Basic Modal Language. A model
of CPL is merely a function v : N → {T, F}, where we say v � xi if
and only if v(i) = T . We can extend the definition to all formulas in
the same way we did for Kripke Semantics.

a. What should the semantics be for ϕ ∧ ψ and ¬$?

b. Show that every model satisfying p ∧ (p→ q) also satisfies q.

Ex. 2.24 —
Show every CPL tautology is true at every world of every kripke model.

Ex. 2.25 —
Explain why ♦ϕ corresponds (epistemically) to Valerie considering ϕ
possible. How would we express that she knows ϕ isn’t true, and how
are these two ideas related?

40 CHAPTER 2. SYNTAX AND SEMANTICS

Ex. 2.26 —

Explain why ♦ϕ corresponds (temporally) to “ϕ will happen eventually”.
How would we express that ϕ will never happen, and how is these ideas
related?

Ex. 2.27 —

Belief modality – Explain some assumptions for how it works, and ask
for what class of frames we should use to interpret it.

Ex. 2.28 —

Something inovlving MAEL. Maybe interpreting formulas?

Ex. 2.29 —

Define a modality C for common knowledge, and define M � Cϕ if
ϕ is true, Kiϕ is true for each i, KjKiϕ is true for every i and j,
KkKjKiϕ is true for each i, j, k, and so on. This encodes the notion
that ϕ is Common Knowledge, since not only is ϕ true. Everyone
knows ϕ is true. And everyone knows that everyone knows that ϕ is
true. And so on.

a.

b.

c.

2.4 Provability: System K

Of course, the Semantics are only half of the story. Logic is, in large
part, about proving things – so how do we prove things? And what
does it mean for something we prove to be true? We literally just
talked about truth being relative to a particular modal.

We will answer these questions by introducing a Deductive System
which lets us (purely formally) push symbols around. If we set up the
system correctly, any string of symbols which we can reach by playing
by the rules of our system will be Valid on some class of models. That
is, the formulas which are derivable will not be true sometimes, they
will be true at every world of every model. What is somewhat more
surprising is that every Valid formula will be derivable!

2.4. PROVABILITY: SYSTEM K 41

2.4.1 Deduction Systems

A Deduction System Λ, for our purposes, is a mathematical object
which we can use to derive theorems. These theorems will be sentences
in a language, for instance, the Basic Modal Language defined above.
It consists of Axioms, which are formulas which we assume as proven,
and Inference Rules, which are rules for turning existing proofs of
formulas into new proofs of other formulas.

Ideally, we would know that all of the formulas we can prove
are valid. A deduction system which only proves valid formulas is
called Sound. Conversely, it would be nice if every valid formula was
provable in our system. This property is called Completeness, and
it turns out the deduction system we will describe enjoys both of these
properties, as we will prove in future chapters.

Think of a deduction system as being a description of rules by
which one can shuffle symbols around. The allowable starting positions
are the axioms, and the rules of inference describe how one can move
the symbols. Then a proof is simply a legal sequence of steps which
arrives at the desired symbol order. It is a certificate that you didn’t
cheat over the course of the game.

We will write our Axioms as

Axiom

and our Rules of Inference as

Antecedent 1 · · · Antecedent n
Conclusion

This notation says that whenever we have derived the sentences
above the line, we are allowed to derive the sentence below the line.
This is why axioms are listed with nothing above the line – they
correspond to things which are derivable with no extra information.

Definition 2.23. Given a deduction system Λ, a Λ-Derivation is a
list of formulas, each of which is either an axiom, or a rule of inference
where each antecedent comes from earlier in the list.

We say Λ ` ϕ (read “Λ entails ϕ” or “Λ proves ϕ”) or ϕ is a
theorem of Λ if some Λ-Derivation ends in ϕ.

We will give examples of derivations in the next section, once we
have a concrete system to work with.

42 CHAPTER 2. SYNTAX AND SEMANTICS

2.4.2 System K

System K will be the system on which we base all other modal
logics, and will have many results proven about it. It has the following
Axioms:

CPL
ϕ a CPL tautology

Distribution or K
�(ϕ→ ψ)→ �ϕ→ �ψ

And the following Rules of Inference:

ϕ→ ψ ϕ
Modus Ponens

ψ

ϕ
Necessitation

�ϕ

Intuitively, what do these rules mean? Though we have not formally
shown it, the theorems of this logic will be true at every world of
every model. To that end, we would like our axiom schemes to be
true at every world of every model. Further, we would like our rules
of inference to preserve that truth.

The first axiom scheme tells us that everything which was true
in propositional logic remains true here, if we are only looking at
one world. This formalizes the idea from earlier that each individual
world of M should look “like a microcosm” of propositional logic. For
example, for every ϕ and ψ, the following are axioms:

ϕ ∧ ψ → ϕ

ϕ ∨ ψ → ψ ∨ ϕ

ϕ ∨ ¬ϕ

Importantly, these are true for every formula ϕ and ψ, even if, say,
ϕ itself refers to �. So, for example, substituting ϕ = �ξ → ξ and
φ = σ ∧�ξ, we see the following are axioms:

(�ξ → ξ) ∧ (σ ∧�ξ)→ (�ξ → ξ)

2.4. PROVABILITY: SYSTEM K 43

(�ξ → ξ) ∨ (σ ∧�ξ)→ (σ ∧�ξ) ∨ (�ξ → ξ)

(�ξ → ξ) ∨ ¬(�ξ → ξ)

One more example which will become important when we start
doing proofs is ϕ ∧ (ϕ → ψ) → ψ. This is another theorem of
propositional logic (as you showed in exercise 2.31), and so is an axiom
of K.4

The distribution axiom scheme tells us something about how we
want � to behave. Namely, for any formulas ϕ and ψ,

�(ϕ→ ψ)→ �ϕ→ �ψ

is an axiom. This makes sense, since if at some world x of some model
both �(ϕ→ ψ) and �ϕ are true, then for every world x sees, ϕ→ ψ
and ϕ are true. But by propostional logic, we know that ψ must be
true at every world x sees. That is, �ψ should be true.

Modus ponens tells us how to combine two existing theorems to
create a new theorem. Namely, if we can derive the truth of both
ϕ→ ψ and ϕ, then we are allowed to derive the truth of ψ.

Finally, Necessisitation tells us how to derive �ϕ. If we have
derived ϕ, then we are allowed to derive �ϕ. If we have proven ϕ,
then it is valid (though we have not officially shown this yet). But if
every world of every model satisfies ϕ, then in particular for any world
x, every world it can see satisfies ϕ. That is, x satisfies �ϕ.

2.4.3 Some Example Derivations

Let’s see a few derivations in K. The definition of derivations might be
somewhat confusing, but hopefully seeing some examples will clarify
what it. The concept itself is not scary at all.

Throughout this, p, q, r, etc. will be primitive propositions.

K ` p ∧ q → p

1. p ∧ q → p CPL

4If taking all of propositional logic as axioms leaves a sour taste in your mouth,
we could instead take any axiomatization of propositional logic, and the deduction
system would remain unchanged.

44 CHAPTER 2. SYNTAX AND SEMANTICS

Since p ∧ q → p is valid in CPL, it is an axiom of K. That’s all there
is to it. More generally, since we are allowed any sentences ϕ or ψ in
the CPL axiom, the following is also a K-derivation for any sentences
ϕ and ψ in the basic modal language:

1. ϕ ∧ ψ → ϕ CPL

As a specific example, the following is a K-derivation
(taking ϕ = �p→ q and ψ = p ∨ ♦q):

1. (�p→ q) ∧ (p ∨ ♦q)→ (�p→ q) CPL

Ok, let’s do a slightly more complicated derivation. From now on
we will use ϕ and ψ freely, knowing that we can substitute any specific
formula we want, as in the previous example. Let’s show that

K ` �(ϕ ∧ ψ)→ �ϕ

1. ϕ ∧ ψ → ϕ CPL

2. (ϕ ∧ ψ → ϕ)→ �(ϕ ∧ ψ)→ �ϕ Distribution

3. �(ϕ ∧ ψ)→ �ϕ Modus Ponens (2,1)

This tells us that every world of every model satisfies �(ϕ ∧ ψ)→
�ϕ. Or, it will once we prove the soundness theorem. Notice in the
last step we used Modus Ponens to derive our result, and we listed in
the description which two formulas were used. It is not necessary to
include these, as there are only finitely many steps before any instance
of Modus Ponens, so we can try every possible pair of formulas to check
that the proof is valid. In the interest of human sanity, though, it is
worth the extra time, especially as proofs get long.

2.4. PROVABILITY: SYSTEM K 45

As an example of proofs getting long, let’s see one last (slightly
more complicated) K-derivation. We’ll show

K ` �(ϕ ∧ ψ)→ �ϕ ∧�ψ

1. ϕ ∧ ψ → ϕ CPL

2. ϕ ∧ ψ → ψ CPL

3. �(ϕ ∧ ψ → ϕ) Necessitation (1)

4. �(ϕ ∧ ψ → ψ) Necessitation (2)

5. �(ϕ ∧ ψ → ϕ)→ �(ϕ ∧ ψ)→ �(ϕ) Distribution

6. �(ϕ ∧ ψ → ψ)→ �(ϕ ∧ ψ)→ �(ψ) Distribution

7. �(ϕ ∧ ψ)→ �ϕ Modus Ponens (5,3)

8. �(ϕ ∧ ψ)→ �ψ Modus Ponens (6,4)

9. (�(ϕ ∧ ψ)→ �ϕ)→(
(�(ϕ ∧ ψ)→ �ψ)→ �(ϕ ∧ ψ)→ �ϕ ∧�ψ

)
CPL

10. (�(ϕ ∧ ψ)→ �ψ)→ �(ϕ ∧ ψ)→ �ϕ ∧�ψ Modus Ponens (9,7)

11. �(ϕ ∧ ψ)→ �ϕ ∧�ψ Modus Ponens (10,8)

Well, that certainly escalated quickly, didn’t it. Even simple derivations
can be quite long – it’s the unfortunate price we pay for formalism.
When we aren’t allowed any shortcuts, we see how complicated even
our simple reasoning really is. It’s honestly kind of encouraging, and
puts mathematics into perspective (at least for me). Epistemically this
theorem says nothing but “If Valerie knows (ϕ and ψ), then she knows
ϕ and she knows ψ.” This is intuitively obvious. Of course it should
be true at every world of every model. The derivation system seems
woefully obtuse, but I promise it will be one of the most powerful
tools in our arsenal, because it can be completely automated. We
will see in section 4.8 that, for many classes of interest, we can write
a computer program which tells us if a given sentence is valid on
that class of frames, no matter how complicated that sentence is.
This computer program is extremely useful in applications, and is
only possible because of this proof-theoretic formalism. Indeed, it is

46 CHAPTER 2. SYNTAX AND SEMANTICS

unweildy for us humans to work with, but it is a simple recursive
definition for a computer.

Ex. 2.30 —
It is OK to cite every theorem of CPL as an axiom because the theory
of CPL is Decidable. We can write a computer program which takes
a formula in the language of CPL and tells us whether it is or isn’t a
theorem of CPL. Write such a computer program. (Hint: any formula
can only refer to finitely many variables, and each variable can only
take finitely many values.)

Ex. 2.31 —
Show that ϕ ∧ (ϕ→ ψ)→ ψ is valid in CPL.

Ex. 2.32 —
Step 9 in the above proof stands out somewhat, and it is worth talking
about it. We used it in order to create an “and” using only Modus
Ponens. We claimed that it was an instance of CPL, but this might
be difficult to see.

a. Show (A→ B)→ ((A→ C)→ (A→ B ∧ C)) is true in CPL.

b. Show step 9 in the above proof is an instance of this axiom.

2.5 Other Deduction Systems

Modal Logic has been used to model many things in its history, and
differing applications have differing needs. It is common to expand
system K by adding new bonus axioms which reflect the assumptions
at hand, and there are standard names for the most frequently used
extensions.5 The price we pay for these new axioms, which let us derive
more things, is a restriction of soundness. Each of these logics will only
be sound on a subclass of all frames. However, in most settings, this
is a small price to pay, and the restriction of frames can be viewed as
ignoring those frames which are irrelevant for some application. We
will show that the restrictions mentioned below are correct in section
3.6, but if you are feeling adventurous you can try to convince yourself

5Unfortunately, the naming convention is rather convoluted, as you will soon
see.

2.5. OTHER DEDUCTION SYSTEMS 47

that any frame outside of the mentioned class will have a model and
a world which thinks the axiom is false.

Axiom T �ϕ→ ϕ
Axiom D �ϕ→ ♦ϕ
Axiom 4 �ϕ→ ��ϕ
Axiom 5 ♦ϕ→ �♦ϕ

Axiom T is the easiest to explain, and the most common axiom
in use. In almost every interpretation of �, we want to know that
something which has some qualified notion of truth should also be true.
For instance, if Valerie knows it is Sunny, then it should also actually
be Sunny ! Epistemically, Axiom T corresponds to the Factivity of
Knowledge, and it forces our frames to be reflexive.

Axiom D also makes sense epistemically – It says that if Valerie
knows that it is sunny, she considers it possible that it is sunny.
Intuitively, knowing something should be more restrictive than considering,
and this axiom enforces that. Temporally, this axiom says that if ϕ
is true at all future times, then there is actually a time in the future
where ϕ is true. A snappy way of saying this is that time has no end
– if there were a way to have ϕ true in the future, but never actually
be true. . . then there must not be a future time. Axiom D forces our
frames to be serial.

Axiom 4 is typically used in logics of time. If, starting today, it
will never rain again, then it is also true that, starting in a few weeks,
it will never rain again. Every future of a few weeks from now is also
a future of today. When Axiom 4 is used epistemically, it says that “If
Valerie knows ϕ, then she knows she knows ϕ.” This is called Positive
Introspection, and forces our frames to be transitive. That said, Axiom
4 tends to not be used alone. If we additionally add Axiom T, then we
have a system valid on transitive and reflexive frames – Partial orders
satisfy both of these, and the preference of a system which also satisfies
T is similar to the preference of � over ≺ in partial orders. Axiom 5
is a levelled up version of Axiom 4, and there isn’t much else to say.
It is such a strong axiom that its frames are heavily constrained (they
must be equivalence relations). For our purposes, Axiom 5 won’t come
up very often, but it is good to know about.

48 CHAPTER 2. SYNTAX AND SEMANTICS

Ex. 2.33 —

We can view axiom D as being a weakened version of axiom T, and
indeed many philosphers treat it that way. Let’s justify this intuition.

a. Show that if M � T , then M � D

b. Find a model M � D but M 6� T
c. In terms of frames, why does it make sense that T should imply

D?

d. Epistemically, why does it make sense that T should imply D?

e. Epistemically, why does it make sense that D should not imply
T?

Ex. 2.34 —

Show that if M is a model of S4, then M � ♦♦ϕ→ ♦ϕ

Ex. 2.35 —

Show that if M is a model of S5, then M models S4

Ex. 2.36 —

There is heated debate in some communities between S4 and S5. Show
that the difference is really one of Axiom B, which we define to be
ϕ→ �♦ϕ. That is, show M � S5 if and only if M � S4 and M � B.

Ex. 2.37 —

Show that, in S4, we can expand and condense repeated modalities.
Precisely, if we define �nϕ to be � · · ·�︸ ︷︷ ︸

n

ϕ, then S4 ` �nϕ ↔ �ϕ.

Similarly, show S4 ` ♦nϕ↔ ♦ϕ

Ex. 2.38 —

Show that, in S5, we can expand and condense any modalities. Precisely,
if we have a block of modalities, the truth only depends on the innermost
one. As two examples:

�♦��ϕ↔ �ϕ

♦♦�♦♦ϕ↔ ♦ϕ

2.5. OTHER DEDUCTION SYSTEMS 49

Ex. 2.39 —

Proof system for MAEL – we want T for each agent

Ex. 2.40 —

Proof system for LTL

Ex. 2.41 —

Recall from exercise 2.2 the logic of Knowledge and Belief. Say we
axiomatize this with Bϕ→ BKϕ (this axiom is called ???)

a. What does this axiom mean, philosophically?

b. Prove something using this axiom

Ex. 2.42 —

Derive the following theorems of T, then prove they are valid semantically
(assuming every model of T is reflexive)

a. T `
b. T `
c. T `

Ex. 2.43 —

Derive the following theorems of S4, then prove they are valid semantically
(assuming every model of S4 is reflexive and transitive)

a. S4 `
b. S4 `
c. S4 `

Ex. 2.44 —

Here is a language with a 3-ary relation symbol, here are its semantics.
Prove some basic facts.

Ex. 2.45 —Consider the frame F = (R2, R) where (x1, y1)R(x2, y2)
if and only if x2

1 + y2
1 = x2

2 + y2
2 . Find a geometric interpretation of R.

Ex. 2.46 —More problems with geometric interpretations!!

Ex. 2.47 —Show that if (M, x) � ϕ → ψ and (M, x) � ϕ then
(M, x) � ψ

50 CHAPTER 2. SYNTAX AND SEMANTICS

Ex. 2.48 —Something to do with a temporal logic other than LTL

Ex. 2.49 —The muddy children puzzle

Chapter 3

Soundness and
Completeness

3.1 Introduction

We have seen how to use Kripke Semantics to provide truth values to
formulas in the basic modal language. Additionally, we have seen the
definition of a proof system, K, which allows us to derive sentences
in this language. We have hinted at the fact that the proof system
and the semantics are related and in this chapter we will prove the
following theorem:

K ` ϕ ⇐⇒ Call � ϕ

This says that a formula ϕ should be derivable in K if and only
if that formula is valid, or true at every world of every model. The
forward direction K ` ϕ =⇒ Call � ϕ is called soundness. After
we prove this theorem, we will show how to modify it to quickly proe
other soundness results. For instance:

T ` ϕ =⇒ Crefl � ϕ

51

52 CHAPTER 3. SOUNDNESS AND COMPLETENESS

3.2 The Soundness Theorem

First, let us fully define the notion of Soundness which we have been
discussing:

Definition 3.1. A derivation system Λ is called sound with respect
to a language L and a class of models C if and only if for every ϕ ∈ L

Λ ` ϕ =⇒ C � ϕ

Theorem 3.2. K is a sound axiomatization of L with respect to Call

Proof. Assume K ` ϕ, that is, assume there is a K-derivation of ϕ.
We proceed by induction on the length of this derivation.

If the derivation has length 1, then it must be a lone instance of an
axiom scheme, so it suffices to show that each axiom scheme is true at
every world of every model. Let (W,R, v) be a model, and x ∈ W a
world. That x � ϕ when ϕ is a CPL tautology was exercise 2.24 from
chapter 2.

So we must show x � �(ϕ → ψ) → �ϕ → �ψ. If x 6� �(ϕ → ψ)
or x 6� �ϕ then by the definition of → in L (recall ϕ → ψ is an
abbreviation for ¬ϕ ∨ ψ) we are done. So assume x � �(ϕ → ψ) and
x � �ϕ. Then by the definition of �, ∀y ∈ R(x).y � ϕ → ψ and
∀y ∈ R(x).y � ϕ. So then ∀y ∈ R(x).y � ψ, and x � �ψ, as desired.

If the derivation has length n+1, then the n+1th line is an instance
of an axiom scheme, an instance of modus ponens, or an instance of
necessitation. In the axiom scheme case, the base case proof still
works. In the modus ponens case, in order to derive ψ we must have
ϕ and ϕ→ ψ earlier in the proof, by definition. Then, by induction, ϕ
and ϕ→ ψ are both true at every world in every model. If x is some
point of some model, then in particular ϕ and ϕ→ ψ are true at x, so
by exercise 2.31 ψ is true at x, as desired. Finally, in the necessitation
case, to derive �ϕ we must have derived ϕ earlier in the proof. So
by induction ϕ is true at every point of every model. Then let x be a
point of some model with relation R. If y ∈ R(x), then y � ϕ, since
by induction every world of every model satisfies ϕ. In particular so
does y. Then ∀y ∈ R(x).y � ϕ and x � �ϕ, as desired. �

This technique of inducting on the length of the proof will be
extremely useful in proving results in modal logic. However, as lazy

3.2. THE SOUNDNESS THEOREM 53

mathematicians, we should strive to save ourselves time when possible.
Because many proof systems in Modal Logic are just K with bonus
axioms, we can prove soundness of other systems efficiently by leaning
on this proof. Notice that when proving that Modus Ponens and
Necessicitation preserve the truth of sentences (the inductive step
in the above proof) we used nothing about the axioms of K. We
only made use of the truth of sentences occuring earlier on in the
derivation. Thus, even if we add new axioms, this step of the proof
goes unchanged! Let’s use this observation to quickly prove a new
soundness result:

Corollary 3.3. T is sound with respect to Crefl

Proof. Assume T ` ϕ. We proceed by induction on the proof length.
If the proof length is 1, then it must be an instance of an axiom scheme,
however any axiom of T which is shared by K is valid on every model,
in particular models in Crefl. So it suffices to show that �ϕ→ ϕ is valid
on Crefl. Let x be a world in a reflexive model, and assume x � �ϕ.
By reflexivity, x ∈ R(x), so by the definition of �ϕ, x � ϕ. As desired.

If the proof length is n+1, then notice that line n+1 is an instance
of an axiom scheme, an instance of modus ponens, or an instance of
necessitation. But in the proof of the soundness of K, we have shown
these are truth preserving on all models, in particular models in Crefl.
So we are done. �

This technique, of using the soundness of K to quickly prove soundness
of extensions of K, is an extremely powerful tool in the characterization
of modal logics. For instance, look how quickly we can prove that
K4 is sound with respect to Ctrans now that we are familiar with the
technique!

Corollary 3.4. K4 is sound with respect to Ctrans

Proof. By the soundness of K, it suffices to show every world of every
transitive model satisfies �ϕ→ ��ϕ. Let x be a world in a transitive
model, and assume x � �ϕ. Let y ∈ R(x) and z ∈ R(y) (if either of
these sets are empty, then the claim is vacuously true). By transitivity,
z ∈ R(x) and so z � ϕ. Thus y � �ϕ and x � ��ϕ, as desired. �

54 CHAPTER 3. SOUNDNESS AND COMPLETENESS

Of course, here is the fastest proof available to a textbook author:

Corollary 3.5. S4 is sound with respect to CPoset

Proof. Exercise 3.1 �

Ex. 3.1 — Prove S4 is sound with respesct to the class of posets.

Ex. 3.2 —Prove S5 is sound with respect to the class of equivalence
relations.

Ex. 3.3 —Find an axiom which, when added to K, is sound with
respect to the class of symmetric models

Ex. 3.4 — Show that the proof theory for Multi-Agent Epistemic
Logic which takes as axioms CPL, as well as Distribution and T for
each Ki individually, plus Modus Ponens and a Necessitation for each
Ki is sound with respect to all frames where every relation Ri is
reflexive.

Ex. 3.5 —Something with a higher-arity modality?

Ex. 3.6 — Define a logic w/
←−
� and

−→
� and use it to talk temporally

about the past. Show these axioms

K for
←−
� and

−→
�

ϕ→←−�−→�ϕ
ϕ→ −→�←−�ϕ←−
�ϕ→←−�←−�ϕ −→�ϕ→ −→�−→�ϕ
Necc for both and MP
are sound with respect to all models with a transitive relation.

Ex. 3.7 —Show belief + knowledge from 2.2 is sound wrt some axioms
on some class of models.

3.3 Completeness

The topic of completeness is dual to the topic of soundness, which we
discuseed in the previous section. Where a proof system is sound (with
respect to a given class of models) when all its theorems are valid on

3.4. MAXIMALLY CONSISTENT SETS 55

that class of models, it is called complete if every valid sentence is a
theorem. That is, Λ is complete with respect to a class C of models
whenever

C |= ϕ =⇒ Λ ` ϕ

While proofs of soundness are typically simple inductions on the
length of derivation, proofs of completeness tend to be more involved,
as they enable us to turn a true statement into its derivation, at least
abstractly. Since derivations can be long and complicated, it is often
easier to argue by contrapositive, and take a nontheorem (something
which has no proof) and find a world of a model which thinks it
is false. For System K, we will take this second approach, and we
will do so spectacularly. We will construct one model, called the
Canonical Model for K, written CK , which simultaneously refutes
all nontheorems! That is, if ϕ is not a theorem of K, then CK 6� ϕ, and
so ϕ cannot be a tautology. It is incredibly non-obvious that such a
model should exist, but in a certain sense, its construction is natural.
We will bake into the model everything we could possibly want to
know about tautologies of K. By using this approach, we will prove

CK |= ϕ =⇒ K ` ϕ

and thus, since CK ∈ Call, we will show

Call |= ϕ =⇒ K ` ϕ.

This will follow because, if Call |= ϕ, every model in Call satisfies ϕ. But
if every model satisfies ϕ, in particular CK does. But by the theorem
we will prove, if CK |= ϕ, we must have K ` ϕ, and completeness
follows.

3.4 Maximally Consistent Sets

The big idea in the construction of CK is that of Consistent Sets.
Like it says on the tin, a consistent set of formulas is a collection of
formulas which are logically consistent. For example, the set X =
{Kp, p} is consistent, whereas Y = {Kp,¬Kp} is inconsistent.

56 CHAPTER 3. SOUNDNESS AND COMPLETENESS

Intuitively, the two facts “Valerie knows p” and “p is true” are
consistent. It is entirely possible that both statements are true simultaneously,
and so X is consistent. However, it cannot be the case that “Valerie
knows p” and “Valerie doesn’t know p” are true at the same time.
Because of this, Y is inconsistent.

There is one last important observation before we make the definition:
Since derivations hae finite length, any derivation using a set Σ to
reach a contradiction can only refer to a finite number of sentences in
Σ. This leads us to the following definitions:

Definition 3.6. If Λ is a proof system, a set of formulas Σ is called
(Λ -)Inconsistent iff there is a finite subset {ϕ1, ϕ2, ϕ3, . . . , ϕn} ⊆ Σ
such that

Λ ` ¬(ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn)

We often abbreviate such formulas as
∧
i≤n ϕi, or as

∧
∆, when ∆

is a finite set of sentences.
Σ is called (Λ -)Consistent iff it is not inconsistent. That is, if

Λ 6` ¬
∧

∆

for each finite ∆ ⊆ Σ.
Further, we say Σ is (Λ –)maximally consistent iff:

• Σ is consistent
• ∀ϕ 6∈ Σ . Σ ∪ {ϕ} is not consistent.

That is to say, not only is Σ consistent, it is maximally so. Any extra
formula we add will make Σ inconsistent.

But how does this help us construct a model that refutes every
nontheorem? The answer, at first glace, is surprising: We will take
the worlds of CK to be the maximally consistent sets! We will want
our model to satisfy the following important (and extremely natural)
relation:

CK ,Σ � ϕ ⇐⇒ ϕ ∈ Σ

3.4. MAXIMALLY CONSISTENT SETS 57

Of course, to make this happen, we will need to cleverly construct a
relation and a valuation function forW = {Σ | Σ maximally consistent}.
Before we do, however, there is one more important consideration: We
know that every world should satisfy either ϕ or ¬ϕ, but if our intuitive
definition is Σ � ϕ ⇐⇒ ϕ ∈ Σ, then we might have a problem: What
if ϕ,¬ϕ 6∈ Σ? Then it’s not clear what Σ should think about ϕ.
Thankfully, this can never happen. This is where we will use the fact
that our worlds are maximally consistent sets.

Theorem 3.7. If Σ is maximally consistent, then for any formula ϕ,
exactly one of ϕ and ¬ϕ is in Σ.

Proof. It is clear that ϕ and ¬ϕ cannot both be in Σ, as this would
violate consistency. Then it suffices to show at least one of the two is
in Σ.

Towards a contradiction, assume that ϕ and ¬ϕ are not in Σ. By
maximality of Σ, Σ ∪ {ϕ} is inconsistent. (since ϕ /∈ Σ) So fix Γ ⊆ Σ
with Γ finite and ¬

∧
(Γ ∪ {ϕ}) provable. That is to say, ¬ (

∧
Γ ∧ ϕ),

or, equivalently, (
∧

Γ)→ ¬ϕ is provable.
But since ¬ϕ /∈ Σ, there must be some ∆ ⊆ Σ with ∆ finite and

∆ ∪ {¬ϕ} inconsistent. Then
∧

∆ → ¬¬ϕ is provable by similar
reasoning as above. So

∧
∆ → ϕ and

∧
Γ → ¬ϕ are both provable.

So
∧

(∆ ∪ Γ) → (ϕ ∧ ¬ϕ) is provable too. Namely
∧

(∆ ∪ Γ) → ⊥ is
provable, so ¬

∧
(∆ ∪ Γ) is provable. But ∆ ∪ Γ is a finite subset of

Σ. So Σ is inconsistent, yielding the desired contradiction. �

This gives us insight into the worlds of CK , but we still need to
define a valuation and a relation in order to make a model.

Thankfully, if we want to know Σ � ϕ ⇐⇒ ϕ ∈ Σ, there is only
one possible choice of valuation function: for a primitive proposition,
we will need CK ,Σ � p ⇐⇒ p ∈ Σ, so we set v(p) = {Σ | p ∈ Σ}.

Finally, we will need a relation on these worlds. And we want the
relation to make the above proposition true. That is, if �ϕ ∈ Σ, then
we want Σ � �ϕ. But this happens exactly when ΣRΓ =⇒ (Γ � ϕ).
We want this to be the case for every �ϕ ∈ Σ, so we will take this as a
definition: ΣRΓ ⇐⇒ ∀(�ϕ ∈ Σ).ϕ ∈ Γ Now the last step is to cover
our tracks. As mathematicians it is important to obscure the process
and show nothing but the completed definition. If our result makes
too much sense, it runs the risk of not being published! After all, truly

58 CHAPTER 3. SOUNDNESS AND COMPLETENESS

deep results must be confusing on first read.1 We should put all of
this pre-work into a definition, and act like we were divinely inspired
to come up with it. Look how, magically, the thing we want to prove
just works when we define things in this way! Little do they know we
cooked up the definition precisely to make the theorem true!

Definition 3.8. The Canonical Model for K is the model CK =
(W,R, v) such that:

• W = {Σ | Σ maximally K-consistent}
• ΣRΓ iff {ϕ | �ϕ ∈ Σ} ⊆ Γ
• v(p) = {Σ | p ∈ Σ}

Theorem 3.9. CK ,Σ � ϕ ⇐⇒ ϕ ∈ Σ

Proof. We induct on formulas. For p primitive, CK ,Σ � p iff p ∈ Σ by
the definition of v. As for the inductive cases:

Say CK ,Σ � ϕ iff ϕ ∈ Σ, and CK ,Σ � ψ iff ψ ∈ Σ.

CK ,Σ � ¬ϕ ⇐⇒ CK ,Σ 6� ϕ
⇐⇒ ϕ 6∈ Σ

⇐⇒ ¬ϕ ∈ Σ

The last equality follows since exactly one of ϕ or ¬ϕ is in Σ

CK ,Σ � ϕ ∧ ψ ⇐⇒ CK ,Σ � ϕ and CK ,Σ � ψ

⇐⇒ ϕ ∈ Σ and ψ ∈ Σ

⇐⇒ ϕ ∧ ψ ∈ Σ

We know ϕ → ψ → ϕ ∧ ψ ∈ Σ, since it is a theorem of CPL, and
thus an axiom of K (note axioms of K are always K-consistent with
any set of K-consistent formulas). But then, since Σ is maximally
consistent, it is closed under implication (cf. exercise 3.11). So ϕ∧ψ ∈
Σ.

1I’m being facetious, but an unfortunate amount of mathematics is acutally
done like this. . .

3.4. MAXIMALLY CONSISTENT SETS 59

Conversely, we know ϕ ∧ ψ → ϕ and ϕ ∧ ψ → ψ are axioms of K
too. So if ϕ ∧ ψ ∈ Σ, we must have ϕ ∈ Σ and ψ ∈ Σ too.

Finally, we get to see our magical definition in action:

CK ,Σ � �ϕ ⇐⇒ ∀Γ ∈ R(Σ).CK ,Γ |= ϕ

⇐⇒ ∀Γ ∈ R(Σ).ϕ ∈ Γ

⇐⇒ �ϕ ∈ Σ

Here the last equality is because (by negating our definition of R)
�ϕ 6∈ Σ if and only if some ΣRΓ for some Γ with ϕ 6∈ Γ. �

It is also important to have a way of constructing maximally consistent
sets with certain properties. This will let us know that there is a world
of CK which does what we want. For this, we will show that maximally
consistent sets are plentiful. In fact, we can grow any consistent set
into a maximally consistent set. The process for this is intuitively
simple: One can imagine a greedy gnome, who starts with a bag full
of consistent sentences. The gnome wants to own as many sentences
as possible, while still knowing that they are consistent. The gnome
lays out all the possible sentences in front of itself, and then starts
walking down the line of sentences. Everytime the gnome gets to a
new sentence, it checks if that sentence is consistent with the ones in
its bag. If it is, the greedy gnome picks up the sentence to keep! If not,
the gnome passes it by, hoping for better luck with the next sentence
in the line. At the end of time, our (very tenacious) gnome will have
collected a Maximally Consistent set of sentences in its bag, as the
following theorem shows:

Theorem 3.10. Any consistent set can be grown to a maximally
consistent set

Proof. Let Σ0 be a consistent set. We will construct a maximally
consistent set Σ such that Σ0 ⊆ Σ. Since there are only countably
many formulas in the basic modal language (cf. exercise 3.9), write
them as {ϕi} for i ∈ N. Now we will go one at a time and decide
which sentences are worth keeping.

60 CHAPTER 3. SOUNDNESS AND COMPLETENESS

We define Σi+1 :≡

{
Σi ∪ {ϕi} if Σi ∪ {ϕi} is consistent

Σi otherwise

Finally, we define Σ =
⋃
i Σi

Clearly Σ0 ⊆ Σ, but is Σ maximally consistent? First, why is Σ even
consistent? By definition, each Σi is consistent. This is because Σ0

is consitent, and for each i, Σi+1 is only different from Σi (which is
consistent by induction) if the new formula ϕi is consistent!

Then if Σ weren’t consistent, there must be some finite set of
formulas ∆ ⊆ Σ which is inconsistent. Let ϕn be the largest of the
ϕi ∈ ∆. Then ∆ ⊆ Σn, which is consistent! We contradict, and see Σ
is consistent.

We still have to show why Σ is maximally consistent. Let ψ /∈ Σ be
some formula. We must show that Σ∪{ψ} is inconsistent. ψ must have
shown up in our enumeration, so call it ϕk But ϕk /∈ Σ, so ϕk /∈ Σk+1,
so by the definition of Σk+1, Σk ∪ {ϕk} must be inconsistent. Since
Σk ⊆ Σ, we see that Σ ∪ {ϕk} = Σ ∪ {ψ} is also inconsistent, so Σ is
maximally consistent. �

The proof of the above theorem hinges on the ability to enumerate
the ϕ, but there are logics one might be interested in where this is
not possible. But fear not! Using the axiom of choice, we can still
save this argument. The only hitch is that the gnome might have to
keep walking until the end of time many many times over. Readers
familiar with transfinite induction should prove this in exercise 3.10.
Readers unfamiliar with transfinite induction should take this on faith
(or familiarize themselves with it and then prove it).

With all this machinery in place, the completeness proof seems easy!

Theorem 3.11. K is complete with respect to the class of all models

Proof. Let ϕ be a nontheorem of K. Then {¬ϕ} is a consistent set, so
we can extend it to a maximally consistent set Σ¬ϕ. Now CK ,Σ¬ϕ �
¬ϕ, and CK ,Σ¬ϕ 6� ϕ. As desired. �

This is somewhat remarkable, as it shows that there is exactly
one model which can detect nontheorems of K. Understanding K as a

3.5. COMPLETENESSS IN OTHER MODAL LOGICS 61

proof system and understanding CK as a model are the same thing!
Provability is exactly encoded by satisfiability in CK . In exercise 3.12
you will finish proving this for yourself.

Ex. 3.8 —
Here is an alternate definition of R in the canonical model. Show that
the soundness proof still works.

Ex. 3.9 —
Show that there are only countably many sentences in the BML (Hint:
How many strings of symbols of length n are there, whether or not
they are meaningful. Then how many (possibly meaningless) strings
are there total? The number of meaningful srings will be a subset of
this.)

Ex. 3.10 — (requires some familiarity with set theory)
Assuming the Axiom of Choice, show that every consistent set of
formulas can be extended to a maximally consistent set of formulas
for any modal logic.

Ex. 3.11 —
Prove that whenever Σ is maximally consistent, if ϕ → ψ ∈ Σ and
ϕ ∈ Σ, then ψ ∈ Σ too.

Ex. 3.12 —
Prove K ` ϕ ⇐⇒ CK � ϕ.

3.5 Completenesss in Other Modal Logics

As was the case for soundness, now that we have completeness for K,
it is quick to find similar completeness proofs for other modal logics.

To illustrate the general strategory, let’s see if we can show that T
is complete with respect to some class of models. We know that T is
complete with respect to Call, since anything valid on all frames is a
theorem of K, and any theorem of K is a theorem of T. We can make
this sharper, though – T is sound with respect to Crefl, and there are
formulas which Crefl validates that Call doesn’t (T, for example). Can
we show that T is complete with respect to Crefl too?

62 CHAPTER 3. SOUNDNESS AND COMPLETENESS

Theorem 3.12. T is complete with respect to Crefl

Proof. As before, we argue by contrapositive. If ϕ is a nontheorem of
T, we want to be able to refute it on a model. The difference now is
that we want to refute it on a reflexive model. Let’s do what we did
before and see what happens.

We construct the canonicial model CT by taking as worlds all
maximal T−consistent sets of formulas, and defining (as before)

ΣRΓ ⇐⇒ {ϕ | �ϕ ∈ Σ} ⊆ Γ

As before, we have Σ |= ϕ ⇐⇒ ϕ ∈ Σ, since our proof of that
fact did not rely on what axioms we were using. Further, notice that,
since T is an axiom, it is consistent with any T-provably consistent set
of formulas. So for each ϕ, �ϕ→ ϕ ∈ Σ (since these are the instances
of axiom T). Then, by the definition of R, we see ΣRΣ, and CT is
reflexive!

Finally if ϕ is a non-theorem of T, then T 6` ¬ϕ so we can extend
{¬ϕ} to a maximally T-consistent set Σ. Then CT ,Σ |= ¬ϕ, and ϕ is
invalidated by a reflexive frame!

Thus, T is complete with respect to Crefl. �

Again, let’s speed things up a bit now that we’re getting the hang
of things.

Theorem 3.13. K4 is sound with repect to Ctrans

Proof. Let ϕ be a nontheorem of K4. Then {¬ϕ} is K4-consistent and
can be extended to a maximally K4-consistent set Σ. We construct the
canonical model CK4 as usual, but recognize �ϕ→ ��ϕ is consistent
for every ϕ, since it is Axiom 4. Thus CK4 |= K4, and R must be
transitive. Thus Σ 6|= ϕ invalidates ϕ on a transitive model, proving
the claim. �

Ex. 3.13 —

a. Prove S4 is not complete with respect to the class of all posets.

b. Find a class of frames for which S4 is complete, and prove it.

Ex. 3.14 —Prove D is complete with respect to the class of serial
frames

3.6. DEFINABILITY 63

Ex. 3.15 — Prove T and 4 are not theorems of K (Hint: find a frame
invalidating them, then argue based on K’s completeness with respect
to all frames)

Ex. 3.16 —Show that the proof theory for Multi-Agent Epistemic
Logic outlined in exercise 3.4 is complete with respect to all frames
where every relation Ri is reflexive.

Ex. 3.17 —Show the proof theory for (the one with �) given in
exercise 3.6 is complete with respect to the class of transitive frames.

3.6 Definability

Notice that there is a clear connection between graph theoretic properties
of the underlying frame class, and certain axioms we could add to K.
For instance, what must it mean about the underlying frame if the
formula �ϕ → ϕ is true in every world of every model built on a
certain frame?

It must mean that every world can see itself. That is, our frame is
Reflexive. To see this, assume towards a contradiction that our frame
is not reflexive. Then there exists a world x with x 6R x. Then consider
the valuation where p is true everywhere except x. Then x � �p but
x 6� p.

However, without prior knowledge, how could we have come up
with this? Notice that if we insist on �ϕ → ϕ being true at every
world, then we need to ensure ϕ must be true, knowing only that �ϕ
is true. Well, the only thing we know to be ϕ worlds are the worlds
related to x, by the definition of �ϕ. So in order to ensure that x
itself is a ϕ world, the only tool we have is to make sure x sees itself.

In this way, we have added an axiom to our logic, and in doing so,
we have restricted the class of frames on which our logic is sound.
Alternatively, we have restricted the class of frames which we are
interested in, and we have updated our logic to reflect this.

Let’s take a look at other potential axioms, some of their logical
interpretations, and how they affect the frames on which we are defined.

64 CHAPTER 3. SOUNDNESS AND COMPLETENESS

3.6.1 Transitivity

Recall a frame is called Transitive if whenever xRy and yRz, then
xRz. Consider the formula �ϕ → ��ϕ. This says that “If every
world x sees in one step satisfies ϕ, then every world x sees in two
steps also satisfies ϕ. But again, the only way for us to prevent an
adversary from stopping us is to guarantee that the world we reached
in two steps was one of the things we already knew to be a ϕ world.
That is, a world reachable in one step.

Towards a contradiction, assume a frame is not transitive, but
satisfies �ϕ → ��ϕ. Then fix xRy, yRz with x 6R z. Consider the
valuation function where p is true everywhere except z. Then x � �p,
since x does not see z. However, y 6� �p, since y does see z. Then x
cannot satisfy ��p.

3.6.2 Definability

Notice that not only are these formulas sufficient to show the desired
frame condition, they are also minimal in the sense that they do not
force any other frame conditions as well. Additionally, our frame
conditions were minimal. Notice that, for �ϕ → ϕ, we could have
said that the collection of all frames with only self loops ensures that
this formula is satisfied. However this is too restrictive. There are
plenty of frames outside this class which also satisfy this axiom. We
say the least restrictive class of frames which renders a set of axioms
sound is Defined by those axioms. Formally:

Definition 3.14. A set of formulas A Defines a class of frames CA
iff

F � A ⇐⇒ F ∈ C

For example, in the above sections, we proved half of definability for
each of the frame properties. Namely, we showed that F � ϕ⇒ F ∈ C.
The opposite direction is easy, and was informally justified. It amounts
to a soundness proof like those seen in section 3.2.

Ex. 3.18 —
Earlier, you showed that S4 was sound with respect to the class of
posets. Show that S4 does not define the class of posets. What class
does it define?

3.6. DEFINABILITY 65

Ex. 3.19 —
Something definable using the logic of

−→
� and

←−
�

Ex. 3.20 —
Show Symmetry is defined by ϕ→ �♦ϕ

66 CHAPTER 3. SOUNDNESS AND COMPLETENESS

Chapter 4

Bisimulations and
Operations on Frames

4.1 Introduction

Because truth of a modal formula is based on the model in which
we interpret it, oftentimes we find ourselves analysing a model, when
really we care about what the model thinks of a particular formula
ϕ. Depending on what exactly we care about, we can often replace
the model with a simpler one, at the cost of losing some information,
which we hopefully don’t care about.

As an example, say we are interested in understanding what formulas
ϕ are true at x in the model below:

Put a model with a lot of stuff behind x, other connected
components, etc

Missing

figure

67

68CHAPTER 4. BISIMULATIONS ANDOPERATIONS ON FRAMES

Since the truth of a modal formula at x only cares about what x
can see, we can replace the complicated model above with the simpler
version below:

Put just what x sees from the above model

Missing

figure

Now we obviously lose a lot of information in making this transformation.
M2 carries no information regarding the truth of modal formulas at
y, for instance. We have simplified the structure which we have to
analyse, but in doing so we have lost the ability to reason about other
worlds. Sometimes this is a wise trade-off to make, other times it is
more useful to keep the entire model around. It all depends on what
one is trying to study.

As another, perhaps less obvious, example of this trade-off, say we
care about what each world thinks about, say, �p ∨ q. Each world
is important, but only with respect to whether it thinks �p ∨ q true
or false. This is dual to the above example, in which we cared about
every formula, but only one world. Note that, as far as �p ∨ q is
concerned, we only care about a world’s opinion on p and q, and the
opinions of what worlds it sees. So to understand this model:

A model with obvious partitions based on p and q - call
them xi, yi

Missing

figure

4.1. INTRODUCTION 69

it suffices to understand this model

A filtration of the above model through �p ∨ q - call the
classes X, Y

Missing

figure

We can also preserve truth, while making the model simpler, in less
obvious ways. Often cycles are hard to analyse, and in some settings
we are willing to give up finiteness in order to “de-loop” our model.
That is, we replace our model by one in which no world has a path to
itself. For example:

A world with 2 states and a cycle

Missing

figure

Here, we can construct the following model by “de-looping” our
model at x:

70CHAPTER 4. BISIMULATIONS ANDOPERATIONS ON FRAMES

Deloop the above model at x

Missing

figure

Notice that, instead of xRyRx, in which x sees itself after two
steps, instead x sees x1 - a copy of x which looks exactly the same as
far as modal formulas are concerned.

We will formalize these, and other, constructions in this chapter,
and will give methods for proving rigorously what our intuition tells
us: These constructions do actually preserve the properties we say
they do. The main tool for this verification is called Bisimulation,
and after properly introducing it, we will use it to show that all of the
assertions above (indeed, some mild generalizations of the assertions
above) are all true.

4.2 Bisimulations

A Bisimulation between two models M1 and M2 gives us a way to
relate worlds in the models which “look the same” as far as modal
formulas are concerned. That is, worlds which have the same theory.

What properties must we require of two worlds w1 ∈ M1 and
w2 ∈M2 to guarantee they will have the same theory? Obviously we
need to know that v1(w1) = v2(w2), as otherwise they will disagree on
even primitive propositions! As for formulas involving �, we will need
two conditions on B to do the job.

First, we need to know that M1 is “powerful enough” to simulate
M2. What do we mean by this? Say x0By0, and y0R2y1. We need
to be able to simulate that move in M1, by finding a x1By1 such that
x0Rx1.

4.2. BISIMULATIONS 71

Show a simulation step by step (with dotted lines, etc)

Missing

figure

Intuitively, let’s see why this condition is necessary: If y1 � ϕ, then
y0 � ♦ϕ. If there were no x1By1, then there would be no x1 � ϕ, and
so x0 6� ♦ϕ.

Similarly, we need to know that M2 can simulate M1. Say x0By0

and x0R1x1. We need to find a y1 such that x1By1 and y0R2y1.

Again, let’s intuitively see why we need this. Say y0 � �ϕ. Then
that means every y1 ∈ R2(y0) satisfies ϕ. If M2 cannot simulate M1,
then it is possible some x∗1 ∈ R1(x0) goes unsimulated. If x∗1 6� ϕ, then
x0 6� �ϕ, so x0 and y0 have different theories. If, however, M2 can
simulate M1, then x∗1 would have a matching y∗1 in M2, contradicting
the fact that every y1 ∈ R2(y0) satisfies ϕ.

So if we require that M1 can simulate M2, we are requiring every
y1 ∈ R2(y0) to have a mate in R1(x0) (for x0By0). By requiring M2

simulate M1, we are saying that every world that x0 sees is related to
some world y0 sees. This is not unlike requiring both injectivity and
surjectivity to say that a function is an equivalence (bijection).

With the intuition safely digested, we are prepared to see the formal
definition:

Definition 4.1. A Bisimulation between models M1 = (W1, R1, v1)
and M2 = (W2, R2, v2) is a relation B ⊆W1×W2 such that whenever
w1Bw2 the following properties hold:

• Invariance: v1(w1) = v2(w2)
• Back: ∀y ∈ R2(w2).∃x ∈ R1(w1).xBy
• Forth: ∀x ∈ R1(w1).∃y ∈ R2(w2).xBy

72CHAPTER 4. BISIMULATIONS ANDOPERATIONS ON FRAMES

This definition is great and all, but let’s spend some time unpacking
what it means. At the end of the day, we want to be able to say that
x1Bx2 =⇒ T (x1) = T (x2), phrased differently:

x1Bx2 =⇒
(
∀ϕ.(M1, x1) � ϕ ⇐⇒ (M2, x2) � ϕ

)
That is, this relation should tell us that two worlds have the same

theory. Importantly, notice that we don’t ask for the converse. It
might be the case theat y1 and y2 have the same theory, yet y1 6B y2.
This gives us extra flexibility, as it allows us to ignore worlds which
we decide are unimportant for a particular application. Indeed, there
are models M1 and M2 with worlds x1 and x2 such that x1 and x2

share a theory, but there is no bisimulation relating the two! You will
show this in exercise 4.6.

Now that the caveats are out of the way, let’s make this precise,
and prove that our definition does the right thing:

Theorem 4.2. If B is a bisimulation between M1 and M2 and x1Bx2,
then M1, x1 � ϕ ⇐⇒ M2, x2 � ϕ

Proof. Let x1 ∈M1 = (W1, R1, v1) and x2 ∈M2 = (W2, R2, v2)
Further, let B ⊆W1 ×W2 be a bisimulation.
By induction on formulas ϕ, we will show Th(x1) = Th(x2).
If ϕ is a primitive proposition p, then by the Invariance property

of B, v1(x1) = v2(x2) and so p is in one iff it is in both.
Inductively, then, consider ¬ϕ. Clearly

x1 � ¬ϕ ⇐⇒ not x1 � ϕ ⇐⇒ not x2 � ϕ ⇐⇒ x2 � ¬ϕ

(since, by induction x1 � ϕ ⇐⇒ x2 � ϕ)
Then, consider ϕ ∧ ψ.

x1 � ϕ∧ψ ⇐⇒ x1 � ϕ and x1 � ψ ⇐⇒ x2 � ϕ and x2 � ψ ⇐⇒ x2 � ϕ∧ψ

Finally, consider �ϕ.
Assume x1 � �ϕ, and let y2 ∈ R2(x2). Then Back says there

exists y1 ∈ R1(x1) such that y1By2. Then, since x1 � �ϕ, y1 � ϕ and
by induction, y2 � ϕ too. So x2 � �ϕ.

Conversely, assume x2 � �ϕ, and let y1 ∈ R1(x1). Then Forth
says there exists y2 ∈ R2(x2) such that y1By2. Then since x2 � �ϕ,
y2 � ϕ and by induction, y1 � ϕ too. So x1 � �ϕ.

4.2. BISIMULATIONS 73

Thus, x1 � �ϕ ⇐⇒ x2 � �ϕ, completing the proof. �

Ex. 4.1 —
Give two models and a relation, prove it is a bisimulation

Ex. 4.2 —
Give two models and a relation, prove it is a bisimulation

Ex. 4.3 —
Give two models and a relation, prove it is a bisimulation

Ex. 4.4 —
Give two models and two worlds, find a bisimulation relating x and y

Ex. 4.5 —
Give two models and two worlds. Show there is no bisimulation
relating x and y.

Ex. 4.6 —

finite Hedgehog and ω Hedgehog

Missing

figure

These two frames are called the hedgehogs because of their resemblance
to the pointy critters. The finite hedgehog is the model with one
branch of each finite length, and the infinite hedgehog has one branch
of each finite length, as well as one infinite length branch.
If we endow these frames with the valuation that thinks p is true at
every world, (and we work with p the only primitive proposition), then
show the following facts:

a. x and y have the same theory

b. There is no bisimulation relating x and y.

74CHAPTER 4. BISIMULATIONS ANDOPERATIONS ON FRAMES

4.3 Generated Submodels

Generated Submodels provide possibly the most intuitive notion of a
transformation that preserves truth for certain worlds in a model. Say
M = (W,R, v) is a model, and x ∈W . Then let Wx = {w ∈W |xR∗w}
be the worlds in W which x eventually sees (recall R∗ is the transitive
closure of R, as defined in 2.12). Then Mx = (Wx, R �Wx , v �Wx) is
called the Generated Submodel of M at x. See example 4.1 above.
We will soon prove that Mx, x � ϕ ⇐⇒ M, x � ϕ, so Mx preserves
the theory of x.

In fact, we can generalize slightly further already: Say X ⊆ W is
a set of worlds. Then put WX =

⋃
x∈XWx. Then

MX = (WX , R �WX
, v �WX

)

is the Generated Submodel of X, and it preserves the theory of every
world in X!

A model with 3 distinguised points x,y,z

Missing

figure

The submodel generated by x,y,z

Missing

figure

4.4. FILTRATION 75

Finally we arrive at the proof. We want to find a bisimulation
B relating the generated submodel to the original model. Hmm. . . if
only we had a natural way of identifying objects in WX with objects
in W . . .

I jest. Obviously we can put xBy ⇐⇒ x = y, since WX ⊆ W . I
now claim that this is a bisimulation.

Theorem 4.3. If MX is a generated submodel of M, then =�WX
is

a bisimulation.

Proof. Said less snappily, we are saying {(w,w) | x ∈ WX} is a
bisimulation.

Fix w1 ∈MX , w2 ∈M such that w1Bw2. We must prove Invariance,
Back, and Forth.

Invariance is easy: If w1 = w2, then vX(w1) = v(w1) = v(w2).

Back is slightly harder: Say w2Rz. Since w1 = w2, w2 ∈ R∗(x)
for some x ∈ X. Then z ∈ R∗(x) too, so z ∈WX and w1RXz.

Forth is easy as can be: Say w1RXz. Then zBz, and w1Rz.
w1 = w2, so w2Rz too. �

4.4 Filtration

Dual to Generated Submodels are Filtrations. To make a Generated
Submodel you start with a collection of worlds you care about, and
you remember just enough about your model to preserve the theory
of those worlds. Dually, to make a Filtration, you first start with a
set of formulas, and you remember exactly enough of your model to
preserve those formulas. Recall the example from above:

We can filter this model M into a new model Mϕ by grouping M
into chunks as follows:

We will define a new relation on these chunks, by setting

Rϕ(X,Y) ⇐⇒ ∃x ∈ X.∃y ∈ Y.R(x, y)

76CHAPTER 4. BISIMULATIONS ANDOPERATIONS ON FRAMES

Copy the model of filtration from above (label the guys
in the chunks as xi, yi)

Missing

figure

Copy the post-filtration model

Missing

figure

4.4. FILTRATION 77

Add in the new relation between chunks

Missing

figure

Now it is easy to check that xi and X agree on ϕ, as do yi and Y
and zi and Z. But clearly this “chunked” model is easier to analyse:

The chunked model, but now with points instead of blobs

Missing

figure

As with Generated Submodels, we will now move to a slightly more
general definition for Filtration, though in spirit we are doing exactly
as in the example above, but with multiple formulas.

Unlike with Generated Submodels, we will need some extra definitions
in order to properly define filtrations.

Definition 4.4. A set of formulas Σ is Subformula-Closed if subformulas
of ϕ ∈ Σ are also in Σ.

Inductively:

• ¬ϕ ∈ Σ implies ϕ ∈ Σ
• ϕ ∧ ψ ∈ Σ implies ϕ ∈ Σ and ψ ∈ Σ
• �ϕ ∈ Σ implies ϕ ∈ Σ

78CHAPTER 4. BISIMULATIONS ANDOPERATIONS ON FRAMES

By example, the following sets are subformula closed:

• {p ∧ ¬q, p,¬q, q},
• {�p ∨ q,�p, q, p},
• {�(p→ q),♦r, p→ q, p, q, r}, and
• {p}

And the following aren’t:

• {p ∨ q, p},
• {p→ q},
• {�p ∨ q, p ∨ q, p, q}, and
• {¬q}

Another definition we will need is the Restricted Theory of a
world. Instead of considering all of the formulas, we only consider
formulas in Σ.

4.4. FILTRATION 79

Definition 4.5. If Σ is Subformula-Closed, then

TΣ(w) = {ϕ ∈ Σ|w � ϕ}

Clearly ∼Σ defined by x ∼Σ y ⇐⇒ ThΣ(x) = ThΣ(y) is an
equivalence relation, and we will denote the equivalence class of x by
[x]Σ, or just [x] if Σ is clear from context.

The set of all equivalence classes will be denoted WΣ

As in the definition of the Canonical Model (section 3.3), we know
what we want to do, and we need to find a way to do it. We have
an obviovus candidate for the worlds and valuation function for the
filtration, but we need to find a relation which will preserve the restricted
theory of every world once we quotient. To do this, we will need
to know that [x]RΣ[y] whenever x and y used to be related. Some
experimentation shows that this is actually enough. This leads us to
the following definition (where we just add in everything we have to):

Definition 4.6. Let Σ be a subformula-closed set of formulas, let
M = (W,R, v) be a model, and let

RΣ([x], [y]) ⇐⇒ ∃x′ ∈ [x].∃y′ ∈ [y].R(x′, y′)

Then MΣ = (WΣ, RΣ, vΣ) (here vΣ([x]) = v(x)) is called A Filtration
of M through Σ.

Of course, this definition is building to the following, somewhat
predictable theorem. After all, we chose our relation to make this
theorem true!

Theorem 4.7. Let M = (W,R, v) a model and MΣ = (WΣ, RΣ, vΣ)
a filtration of M through Σ. Then

∀ϕ ∈ Σ.(M, x) � ϕ ⇐⇒ (MΣ, [x]Σ) � ϕ

Proof. It is tempting to consider bisimulation as a proof technique
here, as it is the title of the chapter. However recall bisimulation shows
that the entire theory of a world is preserved across the bisimulation B,
whereas we are only interested in preserving part of the theory (namely
that part specified by Σ). Because of this, we have no recourse besides
an honest inductive proof. It is precisely for this induction that we

80CHAPTER 4. BISIMULATIONS ANDOPERATIONS ON FRAMES

specify Σ be suformula-closed: we need to know that smaller formulas
are also in Σ in order to apply the inductive hypothesis. That said,
let’s get on with the proof:

We induct on formulas. If p ∈ Σ, then p ∈ v(x) ⇐⇒ p ∈ vΣ(x) by
definition.

If ¬ϕ ∈ Σ, then ϕ ∈ Σ by subformula-closedness. Then by induction

(M, x) � ϕ ⇐⇒ (MΣ, [x]) � ϕ

thus we see

(M, x) � ¬ϕ ⇐⇒ (MΣ, [x]) � ¬ϕ

If ϕ ∧ ψ ∈ Σ, then ϕ ∈ Σ and ψ ∈ Σ too. Now by induction

(M, x) � ϕ ⇐⇒ (MΣ, [x]) � ϕ

and
(M, x) � ψ ⇐⇒ (MΣ, [x]) � ψ.

From this we see

(M, x) � ϕ ∧ ψ ⇐⇒ (MΣ, [x]) � ϕ ∧ ψ

Finally say ♦ϕ ∈ Σ, then ϕ ∈ Σ too.
First, if (M, x) � ♦ϕ, then some y ∈ R(x) satisfies ϕ. But by the

definition of RΣ [y] ∈ RΣ([x]). Further, by induction [y] � ϕ. Then
MΣ, [x] � ♦ϕ.

Conversely, if MΣ, [x] � ♦ϕ, we know there is some [y] ∈ RΣ([x])
with [y] � ϕ. Then by induction, y � ϕ. But then some y′ ∈ R(x) also
satisfies ϕ and so M, x � ♦ϕ. �

Ex. 4.7 —
Our definition of the relation on the filtered model is less general than
it could be. There are other relations which we could also use. Indeed,

4.4. FILTRATION 81

Definition 4.8. Say M = (W,R, v) is a model and Σ is subformula-closed.
A relation RΣ ⊆ WΣ × WΣ is called Σ-appropriate if for every
x, y ∈W , the following hold:

•R(x, y) =⇒ RΣ([x], [y])
•If [x]RΣ[y], then for all ϕ, if �ϕ ∈ Σ and x |= �ϕ then y |= ϕ.

a. Show that any Σ−appropriate relation will define a version of
a filtration preserving everything we want to.

b. Show the defintion we gave is the smallest Σ−appropriate relation,
that is, if SΣ is Σ−appropriate, then RΣ ⊆ SΣ.

c. Define a new relation Rbig
Σ by

[u]Rbig
Σ [v] ⇐⇒ ∀♦ϕ ∈ Σ.v |= ϕ =⇒ u |= ♦ϕ

a) Show it is Σ−appropriate
b) Show it is the largest Σ−appropriate relation

d. What is the difference between the filtration using RΣ and Rbig
Σ ?

Ex. 4.8 —
Show that if x, y ∈ M, then x ∼Σ y ⇐⇒ TΣ(x) = TΣ(y) is an
equivalence relation.

Ex. 4.9 —
Show that vΣ is well defined on propositions p ∈ Σ.

Ex. 4.10 —
Define a relation Rtrans

Σ by

[u]Rtrans
Σ [v] ⇐⇒ ∀�ϕ ∈ Σ.u |= �ϕ =⇒ v |= �ϕ ∧ ϕ

a. Show that whenever M is a transitive model, using Rtrans
Σ gives

a transitive filtration.

b. Show that using RΣ as above might not ensure MΣ is transitive.

Ex. 4.11 —

a. Show that if M is symmetric, using RΣ as above might result
in a filtration which is not symmetric.

82CHAPTER 4. BISIMULATIONS ANDOPERATIONS ON FRAMES

b. Find a relation Rsym
Σ such that, whenever we filter a symmetric

model through Σ using this relation, results in a symmetric
model.

4.5 Unraveling

A lot of complexity in our frames comes from cycles. Partial orders
are nice because we can always distinguish what could happen next
from what has already happened. With cycles we allow ourselves to
go back to where we’ve been. We will now outline a procedure for
transforming (in a theory preserving way) any model into a model
whose underlying frame has no cycles. The price we pay, however, is
that a finite model may become infinite.

Definition 4.9. Let w ∈ M such that there is an R-path from w to
every other world in M. The Unraveling of a model M about w is
a model M̄ = (W̄ , R̄, v̄), where W̄ is the set of R-paths starting at
w, p̄R̄q̄ iff p̄ = (w, p1, . . . pn), q̄ = (w, q1, . . . qn+1), and pi = qi where
defined. and v̄(w, p1, p2, . . . pn) = v(pn)

The best way to explain this construction is with a set of pictures.
It is not complicated, despite what the definition might lead you to
believe:

A single point with a self loop and N.

Missing

figure

4.5. UNRAVELING 83

Two points, one with a self loop

Missing

figure

Three points, one with a self loop

Missing

figure

N

Missing

figure

Here we started with one point, and we replaced its self loop with
a new, equivalent point. Then we replaced the new point with a self
loop, unwinding the loop until the self loop is lost to infinity.

Another example to keep in mind is the following:

84CHAPTER 4. BISIMULATIONS ANDOPERATIONS ON FRAMES

Z/2 with the +1 relation

Missing

figure

uniwind one step

Missing

figure

unwind another step

Missing

figure

4.6. MULTIAGENT LOGIC 85

Z with the ±1 relation

Missing

figure

4.6 MultiAgent Logic

4.7 Proving Inexpressibility

We saw in chapter 3.6 how to show that certain classes of frames are
definable by a sentence ϕ. But how can we know that a class of frames
isn’t definable? We need to argue against all possible sentences in our
logic, a daunting task.

Say C is a class of models. We can compare all possible formulas at
once by exhibiting a bisimulation between a model in C and a model
outside of C. Then we know that no formula can carve out C, because
no formula distinguishes between our two models, one of which is in C
and one of which isn’t!

As an example, consider the class 2 of all models with exactly two
worlds. Is there a formula which defines 2 ? Towards a contradiction,
say there were a formula ϕ such that M � ϕ ⇐⇒ M ∈ 2 . But
then the model with two worlds from before (4.5) should satisfy ϕ.
Unfortunately, since that model is bisimilar to a model with countably
many worlds (and since, |Z| is, among other things, not equal to 2) we
see that model satisfies ϕ too, even though it is not in 2 .

Similarly, one might want to know if we can define a predecessor
operation in the basic modal language. Is there a formula ϕp such
that x � ϕp ⇐⇒ ∃y.x ∈ R(y) with y � p? You might already have
an idea of how to prove that no such ϕp exists:

Consider the generated submodel above (4.1). Notice that in the
full model, y � p and x ∈ R(y), so x � ϕp. However, in the generated

86CHAPTER 4. BISIMULATIONS ANDOPERATIONS ON FRAMES

submodel, x 6� ϕp. Thus there is no way to express ϕp in the basic
modal language.

4.8 Finite Model Property

Possibly the most important use of filtration is proving the Finite
Model Property. This property will allow us to show that K is
decidable! What, though, does this mean?

We say a deduction system Λ is Decidable if there is a computer
program which accepts ϕ as input, and returns True or False based on
whether Λ ` ϕ.

As a rather naive example, we know that CPL is decidable. Let
ϕ be a formula in CPL, and let n be the number of propositional
constants in ϕ. Then there are 2n possible valuations which are
relevant for ϕ – each of the n variables can be assigned to either True
or False. Then we can evaluate ϕ on each of these 2n assignments and
see if each valuation v makes ϕ true.

For more complicated logics, however, it is an interesting question
to see if we can still decide whether a given formula is valid or not.
There has been a lot of dedicated research in recent history to characterize
how powerful we can make a logic while still having decidable theory.
Obviously we cannot go too far, since First Order Logic, which is
what we use (with set theory) as the foundation of contemporary
mathematics, is not decidable. If it were, mathematics would be a
very boring subject indeed! K strikes a nice balance - it is more
interesting that CPL, and yet is still simple enough to be decidable.
In this section we will outline why.

Let C denote the canonical model for K. Then we know that ϕ is
valid (that is, it is true in every model) if and only if C � ϕ. A priori,
however, this is not useful - C is uncountable, and so it is not possible
to compute with it effectively. It is for this reason that we introduce
the Finite Model Property:

Definition 4.10. We say a logic Λ has the Finite Model Property
if whenever ϕ is refuatable, it is refutable in a finite model.

4.8. FINITE MODEL PROPERTY 87

It is a theorem of computability theory1 that every logic (with
“simple” axioms) with the finite model property is decidable (cf. 4.13).
We will not appeal to this theorem, and will instead show that K is
decidable by hand (using the finite model property directly). This
is advantageous since it also provides a more efficient algorithm: We
know the general algorithm promised to us by computabiltiy theory
will halt, but we cannot know when. With our construction we can
bound the runtime of our algorithm in terms of the complexity of ϕ
(cf. 4.14).

Theorem 4.11. K has the finite model property, moreover if ϕ is not
valid and has n-many subformulas then it is invalidated by a model
with at most 2n worlds.

Proof. Let ϕ be a formula invalidated by some model. Then, in
particular, C 6� ϕ. Let Σ be the subformulas of ϕ. Then Σ is subformula
closed, and so we can consider CΣ, the filtration of C through Σ. Since
each world in CΣ is characterized by which formulas in Σ that it thinks
is true (indeed, this is how we defined our equivalence relation), there
are at most 2|Σ| many worlds. Since CΣ and C agree on any formula in
Σ, CΣ is a model with at most 2|Σ| many worlds which also invalidates
ϕ. �

This theorem tells us everything we need to know! Given a formula
ϕ, how can we tell if ϕ is true in every world of every model?

Well if it isn’t, then there is a model with at most N worlds which
refutes it! Here N = 2|Σ|, as in the above proof. So we can simply try
every possible model with fewer than N worlds (there are only finitely
many 4.14). If one of the worlds in one of these models invalidates ϕ,
then we know it is invalid! However, if none of the worlds in any of
these models invalidates ϕ, then we know ϕ must actually be valid!

The fact that checking validity of a formula ϕ can be reduced to
checking only finitely many models (indeed, only cheking models up
to a size we can compute in advance!) is somewhat magical. In the
exercises you will have the opportunity to explore related results for
yourself, and show that many modal logics have this property.

1sometimes called recursion theory

88CHAPTER 4. BISIMULATIONS ANDOPERATIONS ON FRAMES

Ex. 4.12 —

Show T is also decidable by applying a filtration argument to the
canonical model for T.

Ex. 4.13 —

(If you know some computability theory)

a. Show semidecidable and cosemidecidable implies decidable2

b. Show any logic with semidecidable axioms has semidecidable
theorems

c. Show any logic with the finite model property has cosemidecidable
theorems, that is, the set of nontheorems is semidecidable.

d. Conclude that any logic with semidecidable axioms and the
finite model property is decidable.

Ex. 4.14 —

a. Find a formula for the number of models with at most N worlds

b. Implement the algorithm described above

c. Compute a (rough) big-O class for your implementation, in
terms of the number of subformulas of ϕ.

Ex. 4.15 —

Say we have two models M1 and M2. We can construct their Disjoint
Union (M1tM2) as follows: M1 = (W1, R1, v1) and M2 = (W2, R2, v2),

written M1tM2, is (W1∪W2, R1∪R2, v) where v(w) =

{
v1(w) w ∈W1

v2(w) w ∈W2

The unions in the above definition are assumed to be disjoint, that
is W1 ∩W2 should be ∅. Notice we can always make this happen by
renaming all of the worlds in W2 if we need to.

2semidecidable is called recursively enumerable by some authors, and similarly
decidable is called recursive in these circles.

4.8. FINITE MODEL PROPERTY 89

A disjoint union of models

Missing

figure

a. Intuitively, M1 and M2 can’t interact using modal formulas,
since there is no edge from M1 to M2. Make this precise by
proving there are two bisimulations, one from M1 to M1 tM2

and one from M2 to M1 tM2.

b. Construct models M1 and M2 such that M1 is not a generated
submodel of M1 tM2.

c. Show that for w ∈M, (M tN)w = (Mw)

Ex. 4.16 —
Is the class of acyclic models definable?

Ex. 4.17 —
Every satisfiable formula of depth n is satisfiable on a tree of height
≤ n.

Ex. 4.18 —
Is there a formula ϕ such that x |= ϕ if and only if a p-world sees x?

Ex. 4.19 —
Let us say B ⊆ W1 ×W2 is a n-Bisimulation if we can simulate at
least n moves (Say this better).

a. Show n-bisimulations preserve formulas of depth ≤ n
b. If there is a n-bisimulation for every n, is there a real bisimulation?

Ex. 4.20 —
Show every model M |= S5 whose relation is complete (that is, R =
W × W) is bisimilar to a model where w1 6= w2 ⇐⇒ Th(w1) 6=
Th(w2).

90CHAPTER 4. BISIMULATIONS ANDOPERATIONS ON FRAMES

Ex. 4.21 —
Show that every refutable formula can be refuted on a model satisfying
x 6= y =⇒ Th(x) 6= Th(y)

Part II

Extended Topics

91

Chapter 5

Topological Semantics

5.1 Introduction

One of the fundamental principles of logic is the separation between the
symbols we write, and their interpretation as true or false statements.
One way we can show this explicitly in Modal Logic is to provide an
entirely new way to interpret the symbols we write down. Instead of
Kripke Semantics, which we have been using for the book thus far,
we will introduce Topological Semantics.

Obviously this will require some background in topology, so let’s
start there.

5.2 Topology

Topology is a general way to describe geometric structure in mathematics.
It is ubiquitous in the landscape of contemporary mathematics, and
can be used creatively in many different areas. As a simple example of
the “geometric structure” I’m referring to, consider the following two
diagrams.

We can clearly see that x0 is close to being a member of A0 in a way
that x1 is not close to being a member of A1. Similarly, y0 is somehow
more in A0 than y1 is in A1. Unfortunately, in pure set theory, a point
either is or is not in the set, there is no such notion of “closeness”. We

93

94 CHAPTER 5. TOPOLOGICAL SEMANTICS

Two potatoes, 4 points, each with dotted neighborhoods

Missing

figure

will turn to Topology to give us this notion of closeness, which we
will then use to interpret sentences in Modal Logic.

One way to explain why x0 seems to be “closer” than x1 to A0 is
by considering measurements which we are allowed to take. If U ⊆ X
is a subset of our space, then we can ask “is x ∈ U?” Of course, each
of these measurements comes with some amount of ambiguity. We
cannot tell where in U our point is, only that it is in U . Now we can
see why this gives us a notion of closeness! If we limit ourselves to
knowledge that these measurements can provide, then we know that
y0 ∈ A1. We aren’t sure exactly where it is, but no matter where
it is, our measurement guarantees it is in A1. x1 is similar, there is
a measurement we can take which guarantees it is not in A0. x0,
however, is different. No matter what measurement we take, parts of
that measurement will be in A and parts won’t be. This corresponds
to the idea that x0 is “almost” in A0. In the case of x0, it happens to
not be in A0, while y1 is in A1, but barely. We formalize these ideas
below:

Definition 5.1. A Topology on a set X is a set τ ⊆ 2X of subsets
of X satisfying the following 4 rules:

• X ∈ τ
• ∅ ∈ τ
• If Ui ∈ τ , then

⋃
Ui ∈ τ

• If U1, . . . , Un ∈ τ , so is U1 ∩ . . . ∩ Un

The sets U ∈ τ are called Open.

5.2. TOPOLOGY 95

Notice the distinction between the last two clauses. We are allowed
to union as many sets as we want, but we are only allowed to intersect
finitely many!

Intuitively, what do these rules mean with respect to the “measurements”
available to us? X ∈ τ and ∅ ∈ τ say that we have access to
useless measurements. Every x is in X, and no x is in ∅, so these
measurements don’t tell us anything. Of course we can always take a
measurement which gives us no information!

If we think of an open set as one where we can know, for sure,
that a point is inside it (because it is itself a measurement), it makes
sense for a union of open sets to be open. After all, if x is in the
union of open sets, then there must be an open set which contains it.
But then the measurement that that open set corresponds to will say,
definitively, that x is in the union! Taking intersections, though, is
harder. We need to check that x is in each of the measurements, and
so we restrict to finitely many.

Another important notion is that of a closed set. These are the
complements of open sets. Where an open set is one that we can
definitively say a point is inside it, a closed set is one where we can
definitively say a point isn’t inside it.

We will also define the Interior and Closure of a set A (written
Ao and A) as the largest open set contained in A and the smallest
closed set containing A. Equivalently:

Ao =
⋃
{U ∈ τ | U ⊆ A}

A =
⋂
{U | U c ∈ τ ∧A ⊆ U}

The interior of A should be thought of as all of those points which
are definitely in A. The closure, dually, should be thought of as all
those points which are “close to A”.

5.2.1 Examples

As the defining example of a topological space, we have to include
R with its “usual topology”. In R we already have a good idea of
when two points are “close to” one another, and we can use this to
create a topology on R. All of topology is arguably based on trying

96 CHAPTER 5. TOPOLOGICAL SEMANTICS

to generalize this one example, so it is a very important motivator in
the area.

Intuitively, x and y are close to each other if |x− y| is small. And
if |x− y| < |z −w|, then we say x and y are closer to each other than
z and w are. So we might define an open set around x to be those y
which are sufficiently close to x for some margin of error. Then

Bε(x) = {y | |x− y| < ε}

the Open Ball of Radius ε centered at x, should be open. We
want this to be a topology, so we say an open set is any union of open
balls. Formally, we set U ∈ τ if and only if U is a union of open balls.

Notice
Bε(x) = (x− ε

2
, x+

ε

2
)

and any open interval (a, b) = {x | a < x < b} = B b−a
2

(a+b
2) is an

open ball.

Theorem 5.2. The usual topology on R is actually a topology.

Proof. X is open because X =
⋃
x∈RB1(x), and so is the union of

open balls.
If U and V are both open, then why is U ∩V open? Let U =

⋃
i Ui

and V =
⋃
j Vj where each Ui and Vj is an open ball. Then

U ∩ V =
⋃
i

Ui ∩
⋃
j

Vj =
⋃
i,j

Ui ∩ Vj .

Since the intersection of open intervals is either empty or an open
interval (cf. exercise 5.2) Ui ∩ Vj is either empty or an open interval.
In this way

⋃
i,j Ui ∩ Vj is the union of open intervals (plus possibly

some empty sets that don’t impact the union), and is itself open.
If Ui are open sets, then

⋃
Ui is the union of unions of open

intervals. But this is still a union of open intervals, and
⋃
Ui is

open. �

In addition to (a, b) being open, we also have (a,∞) and (−∞, b)
open. This is because (a,∞) =

⋃
a<b(a, b) and (−∞, b) =

⋃
a<b(a, b)

are both unions of open sets. Also, the closed intervals [a, b] = {x | a ≤
x ≤ b} are actually closed, since [a, b] = ((−∞, a) ∪ (b,∞))

c
. That is,

5.2. TOPOLOGY 97

Open Unit Square

Missing

figure

Closed Unit Triangles (disjoint)

Missing

figure

each [a, b] is the complement of an open set. Finally, it is easily checked
that [a, b]

o
= (a, b) and (a, b) = [a, b].

We can also work with “the usual topology” on R2. Now we take
our open balls to be

Bε((x1, x2)) = {(y1, y2) |
√

(y1 − x1)2 + (y2 − x2)2 < ε}.

Notice this is really saying the same thing as in R – Bε((x1, x2)) is the
set of those points less than ε away from (x1, x2).

Again, we call a set U ⊆ R2 open if it is the union of open balls.
It is routine to verify that it is indeed a topology (cf. exercise 5.6)

In the figures above, we used dotted lines to indicate the region
does not contain the line drawn, whereas a solid line indiates that the
line is to be included in the set. Thus the first figure shows the set

{(x, y) | 0 < x < 1 and 0 < y < 1},

98 CHAPTER 5. TOPOLOGICAL SEMANTICS

which is open (since every point (x, y) in the square has an open ball
which is completely contained in the square). Its closure is the square

{(x, y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}.

Notice the closed square is indeed closed, since its complement is open.
The closed square is not open, however. This is because any open ball
centered at a point on the boundary of the square has to contain points
outside the edge of the square must contain points outside the square.

Similarly, the set consisting of the two triangles above is closed,
since its complement is open. The interior of the above set is the
same two triangles, but without their boundaries. As a more concrete
example, the interior of the triangle

{(x, y) | 0 ≤ x, 0 ≤ y, x+ y ≤ 1}

is the set

{(x, y) | 0 < x, 0 < y, x+ y < 1}.

There are more complicated examples, though. As one example,
take Q ⊆ R. Then Q is not open (since any ball at a rational point
must also contain irrationals) and is not closed (since any ball around
an irrational point must contain rationals). Indeed, Q = R and Qo =
∅. Somewhat amazingly, this means the interior of Q is R is not Q.
Similarly the closure of Qo is ∅ is not Q.

We can also explicitly give topologies on finite sets. For example,
the set {a, b, c} can be topologized with

τ = {∅, {c}, {a, c}, {b, c}, {a, b, c}}

Indeed there are 9 topologies on a 3 point space that are fundamentally
different. A challenging exercise might be to try and find all of them!
Somewhat interestingly, there is no known simple formula for T (n),
the number of unique topologies on a set of size n.

With this topology, we can quickly see what the open sets are. The
complements of these will be closed sets, namely:

{a, b, c}, {a, b}, {b}, {a}, ∅

5.2. TOPOLOGY 99

Now we can say, for instance, that the interior of {a, b} is ∅, since
it is the largest open set contained in {a, b}. Similarly, the closure of
{a, c} must be {a, b, c} since it is the smallset closed set containing
{a, b}.

Our last example is called 2ω (pronounced “Cantor Space”), and
is somewhat more exotic. First, 2ω is the set of all of infinite binary
strings, and can be identified with functions from N→ {0, 1}1. Intuitively,
two binary strings are “close to” each other if they look the same for a
long time. To that end, we introduce (for each s a finite-length binary
string) the basic open set Ns = {x | x has s as a prefix .

As an example, N0 is the set of all strings starting with 0, N1101 is
the set of all strings starting with 1101, and and every open set is the
union of these basic opens.

These basic opens are special, though – unlike other topological
space we’ve seen, these basic open sets are also closed! In the literature
they are typically referred to as “basic clopen sets”, and indeed N0 is
N c

1 . Similary, N10 = (N00∪N01∪N11)c, and N1101 is the complement
of the union of the 15 other basic clopens of length 4. Notice this does
not mean every set is clopen! In exercise 5.13 you will give examples
of a closed set that is not open, and an open set that is not closed.

Ex. 5.1 —

a. Show that the arbitrary intersection of closed sets is closed.

b. Show finite unions of closed sets are closed.

Ex. 5.2 —

Show that the intersection of two open intervals (a, b) and (c, d) is
either empty or an open interval.

Ex. 5.3 —

Show that X and ∅ are both closed and open in any topology, such a
set is called clopen.

Ex. 5.4 —

Show that Xo = X, X = X, ∅o = ∅, and ∅ = ∅.

1Indeed, 2ω is just set-theorist lingo for all functions N → {0, 1}

100 CHAPTER 5. TOPOLOGICAL SEMANTICS

Ex. 5.5 —
In the usual topology on R, show that any two points x, y ∈ R can
be separated by open sets. That is, there are Ux and Uy open with
x ∈ Ux, y ∈ Uy, and Ux ∩ Uy = ∅.

Ex. 5.6 —
We will show that the usual topology on R2 is indeed a topology.

a. Show that for any two open balls B1 and B2, there is an open
ball B3 ⊆ B1 ∩B2

b. Use the lemma from (a.) to conclude that the usual topology
is a topology on R2.

Ex. 5.7 —
A question about the sorgenfried topology on R?

Ex. 5.8 —
Show τ = {∅, {x}, {x, y}} is a topology on {x, y}. This is called the
Sierpinski Topology.

Ex. 5.9 —
For this exercise, we write Closure(A) and Interior(A) for A and Ao.
Additionally, we write Comp(A) for X \A, the complent of A.

a. Prove Comp(Closure(Comp(A))) = Interior(A)

b. Prove Comp(Interior(Comp(A))) = Closure(A)

Ex. 5.10 —
Show each of the following:

a. Ao ⊆ A
b. A ⊆ B =⇒ Ao ⊆ Bo

c. Aoo = Ao

d. A ∩Bo = Ao ∩Bo

Ex. 5.11 —
Show each of the following:

a. A ⊆ A
b. A ⊆ B =⇒ A ⊆ B

5.2. TOPOLOGY 101

c. A = A

d. A ∪B = A ∪B

Ex. 5.12 —

Show that the elements x of the A are exactly the elements which
are “close to” A. As above, this means that there is no measurement
which confirms x is not in A. Formally, show x ∈ A if and only if
every open set U containing x satisfies U ∩A 6= ∅.

Ex. 5.13 —

a. Show for any infinite string s ∈ 2ω, {s} is closed but not open.
(Hint: can you write it as an intersection of clopen sets? Can
you write it as a union of clopen sets?)

b. Show for any s ∈ 2ω, {s}c is open but not closed.

Ex. 5.14 —

a. Show, for any set X, that τ = 2X is a topology on X. This is
called the Discrete Topology

b. Show, for any set X, that τ = {∅, X} is a topology on X. This
is called the Indiscrete or Trivial Topology

5.2.2 Continuous Maps

Not only are topological spaces important, but also the maps between
them that preserve the topological structure. The relevant functions
are called continuous, and are defined as follows:

Definition 5.3. If (X, τX) and (Y, τY) are two topological spaces,
then f : X → Y is called Continuous if for every U ∈ τY ,

f−1(U) ∈ τX .

An equivalent (perhaps more intuitive definition) is the following

Theorem 5.4. A function f : (X, τX)→ (Y, τY) is continuous if and
only if f(A) ⊆ f(A)

102 CHAPTER 5. TOPOLOGICAL SEMANTICS

Proof. =⇒:

Since f(A) ⊆ B ⇐⇒ A ⊆ f−1(B) for any sets A and B, it suffices to
show A ⊆ f−1(f(A)). But

A ⊆ f−1(f(A))

so

A ⊆ f−1(f(A))

(by exercise 5.11). Then

f(A) ⊆ f(A)

so

f−1(f(A)) ⊆ f−1(f(A))

and

f−1(f(A)) ⊆ f−1(f(A))

Finally, since f is continuous and f(A) is closed, f−1(f(A)) is
closed too (as the diligent reader will prove in exercise 5.15). Then

f−1(f(A)) = f−1(f(A))

(since the closure of a closed set is itself).

Putting these together, we see

A ⊆ f−1(f(A)) ⊆ f−1(f(A)) = f−1(f(A)).

⇐=:

Again, by exercise 5.15, it suffices to show if D ⊆ Y is closed, then
C = f−1(D) is closed too.

Then

f(C) ⊆ f(C) = f(f−1(D)) ⊆ D = D

(using exercise 5.11 liberally, and recalling D is closed).

So C ⊆ f−1(D) = C, and thus (since C ⊆ C) C = C and C is
closed. �

5.3. TOPOLOGICAL SEMANTICS 103

Ex. 5.15 — Show that f : X → Y is continuous if and only if f−1(C)
is closed (in X) for every C closed (in Y).

Ex. 5.16 —

Show the definition of continuity we gave aligns with the standard
calculus definiton in R with the usual topology. That is f : R→ R is
continuous if and only if

∀x0.∀ε > 0.∃δ > 0.∀x.(|x− x0| < δ → |f(x)− f(x0)| < ε)

Ex. 5.17 —

Show the following functions are continuous

a. f : R→ R, f(x) = x2 (here R has the usual topology)

b.

c.

d.

Ex. 5.18 —

Find an example of an open set A ⊆ R with the usual topology and a
continuous function f : R→ R such that f(A) is not open.

Ex. 5.19 —

Show the only continuous functions from R→ 2ω are constant functions.

Ex. 5.20 —

This exercise refrences the definitions in exercise 5.14

a. Show every function out of a discrete space is continuous

b. Show every function into an indiscrete space is continuous

5.3 Topological Semantics

Now that we have a better understanding of topology, how can we do
logic with it? We will now introduce a way of interpreting the symbols
of the Basic Modal Language in terms of Topological Spaces instead
of Kripke Structures.

104 CHAPTER 5. TOPOLOGICAL SEMANTICS

Given a space X with topology τ , we additionally define a valuation
function v : PROP → 2X which tells us which points of X satisfy a
given primitive proposition. Keep in mind v(p) can be any set at all,
not necessarily an open one.

Definition 5.5. A topological space (X, τ) equipped with a valuation
function v as above is called a Topological Model

We start as we did with Kripke Semantics – by giving interpretations
at a world. Let x ∈ X, with (X, τ, v) a topological model. Then we
define X,x |= ϕ recursively as follows:

X,x |= p ⇐⇒ x ∈ v(p) Primitive Propositions

X,x |= ¬ϕ ⇐⇒ X,x 6|= ϕ Negation

X,x |= ϕ ∧ ψ ⇐⇒ X,x |= ϕ and X,x |= ψ And

X,x |= �ϕ ⇐⇒ ∃U ∈ τ.x ∈ U and ∀u ∈ U.X, u |= ϕ Box

These semantics look exactly like Kripke Semantics with the exception
of the interpretation of �. Intuitively this is because � is the part
of the Basic Modal Language that uses the extra structure. The
semantics of � are not entirely different, though. Topologically, we
say that x |= �ϕ if every world “close enough” to x models ϕ. This is
similar to our familiar Kripke Frames, if we think about every world
“close to” x as being those worlds only one step away.

Definition 5.6. As before, we say that ϕ is Validated by a model
(X, τ, v) if every world has X,x � ϕ. Similarly, a space (X, τ) validates
ϕ if, for every valuation v, (X, τ, v) validates ϕ. Finally we say a class
of spaces C validates ϕ if every space X ∈ C validates ϕ.

We write (X, τ, v) � ϕ, (X, τ) � ϕ, and C � ϕ respectively for the
three definitions of validation.

As before, we can directly reason about the semantics of our abbreviations
by making use of the following theorem:

5.3. TOPOLOGICAL SEMANTICS 105

Theorem 5.7.

M, x |= ϕ ∨ ψ ⇐⇒ M, x |= ϕ or M, x |= ψ

and

M, x |= ♦ϕ ⇐⇒ ∀U ∈ τ.x ∈ U =⇒ ∃y ∈ U.M, y |= ϕ

Proof. M, x |= ϕ ∨ ψ ⇐⇒ M, x |= ¬(¬ϕ ∧ ¬ψ), but this happens
exactly when M, x doesn’t satisfy ¬ϕ ∧ ¬ψ. But then it must satisfy
ϕ or ψ.

Similarly, M, x |= ♦ϕ ⇐⇒ M, x |= ¬�¬ϕ. Then for every open
set around x, ¬ϕ cannot be true. So every open set containing x also
contains a y with M, y |= ϕ, as claimed. �

As an example, consider R with its usual topology, and the valuation
function v(p) = Q, v(q) = {x | x > 0}, and v(r) = [−2, 1].

Then 1
2 |= r ∧ q ∧ p, and −

√
2 |= r ∧ ¬p. Similarly, π |= q ∧ ¬p but

3 |= p ∧ q ∧ ¬r.
More interestingly, we have x |= ♦p for every x, and 0 |= ♦q ∧ ¬q.

We also see 0.999 |= �r, and −2 |= r ∧ ¬�r. These are because every
open ball around every real number contains a rational, every open set
around 0 must contain an element of {x | x > 0}, the ball of radius
0.000001 centered at 0.999 is entirely contained inside [−2, 1], but no
ball of any radius centered at 2 can be contained in [−2, 1].

If we again consider the finite topology on {a, b, c} given by

τ = {∅, {c}, {a, c}, {b, c}, {a, b, c}}

with v(p) = {a}, v(q) = {b} and v(r) = {a, c}, then

a |= �r, and c |= �r, but b |= ¬r ∧ ¬�r. Similarly, b |= ♦r and
a |= ♦(p ∧ r).

We define the Denotation of a formula as before:

Definition 5.8. For some sentence ϕ, we (as usual) define its Denotation
JϕK = {x ∈ X | x � ϕ}.

106 CHAPTER 5. TOPOLOGICAL SEMANTICS

We now give a recursive definition of JϕK:

JpK = v(p)

J¬ϕK = JϕKc

Jϕ ∧ ψK = JϕK ∩ JψK
J�ϕK = JϕKo

It is worth noting that our abbreviations have convenient interpretations
too:

Theorem 5.9. Jϕ∨ψK = JϕK∪ JψK Jϕ→ ψK = JϕKc ∪ JψK J♦ϕK = JϕK

Proof. Exercise 5.26 �

Ex. 5.21 —
Here is a model, here are some sentences, which worlds in the model
satisfy the sentences?

Ex. 5.22 —
Here is a model, here are some sentences, what are JϕK for each
sentence?

Ex. 5.23 —
Here is a model, here are some worlds, what are Th(x) for each world?

Ex. 5.24 —
Directly show (using topological semantics) that the following sentences
are valid

a.

b.

c.

Ex. 5.25 —
The following sentences aren’t valid. Find a counterexample for each
one

a.

b.

5.4. SOUNDNESS 107

c.

Ex. 5.26 —

Prove theorem 5.9

Ex. 5.27 —

Show ϕ→ ψ is valid if and only if JϕK ⊆ JψK.

5.4 Soundness

Because topological spaces have more structure than graphs, K is not a
strong enough logic to provide a completeness result when we interpret
the basic modal language in this setting. As an example, we know that
Aoo = Ao in a topological space. This tells us that ��ϕ↔ �ϕ should
be valid on the class of all topological spaces. Of course, �ϕ→ ��ϕ
is not a theorem of K (3.15) and so our logic would not be complete.
The correct logic is S4, which, as a reminder, is K augmented with the
following axioms:

• �ϕ→ ϕ
• �ϕ→ ��ϕ

These can be interpreted, respectively as “If Valerie knows ϕ, then
ϕ is true” and “If Valerie knows ϕ, then she knows she knows ϕ”.
That is, Valerie only knows true things, and she is aware of everything
she knows.

Let’s start with soundness – Though the diligent reader will have
unwittingly done much of this proof already. We will first prove an
incredibly useful lemma:

Theorem 5.10. ϕ → ψ is valid on a space (X, τ, v) if and only if
JϕK ⊆ JψK.

Proof. ϕ→ ψ is valid ⇐⇒ Jϕ→ ψK = X ⇐⇒ JϕKc ∪ JψK = X ⇐⇒
JϕK ⊆ JψK �

108 CHAPTER 5. TOPOLOGICAL SEMANTICS

Theorem 5.11. S4 is sound with respect to the class of all topological
spaces

Proof. We begin by showing that each axiom is validated by the class
of all topological spaces:

Any theorem of CPL is true at any world, for exactly the same
reason as in Kripke Frames: the theorems of CPL do not refer to the
topological structure, and therefore are true at each world individually.

For the modal axioms, S4 is axiom K, T, and 4, so it suffices to
check that each of those is valid.

K (�(ϕ→ ψ)→ �ϕ→ �ψ):

Say x � �(ϕ → ψ) and x � �ϕ. Then there are open sets U and
V containing x so that every y ∈ U satisfies ϕ → ψ and every y ∈ V
satisfies ϕ.

Then U ∩ V is open, and every y ∈ U ∩ V satisfies ϕ → ψ and ϕ,
thus y � ϕ too.

So U ∩ V witnesses the fact that x � �ϕ.

T (�ϕ→ ϕ):

It suffices to show JϕKo ⊆ JϕK by exercise 5.27. However this is
true by exercise 5.10.

4 (�ϕ→ ��ϕ):

Again, it suffices to show ϕo ⊆ ϕoo. However this is also true by
exercise 5.10.

As for the rules of inference:

Modus Ponens:

If ϕ → ψ and ϕ are both valid, then every world satisfies ϕ → ψ
and ϕ. Then, since CPL works everywhere, ψ must be true at every
world too.

Neccessitation:

If ϕ is valid, then JϕK = X. But then J�ϕK = JϕKo
= Xo = X by

exercise 5.4. �

5.5. COMPLETENESS 109

5.5 Completeness

We were able to prove soundness directly, using the topological semantics
and a few helpful lemmas. This was not unlike the proof of soundness
in the Kripke case, where we basically followed our nose to get the
desired results. Completeness, as with Kripke frames, will be harder,
but we will offload a lot of the work by adapting our Kripke completeness.
It is possible to construct a canonical topological model, a single
topological space which refutes every non-theorem of S4, however we
will not take that approach here (though it will be available in exercise
5.36 for the extremely dedicated reader).

We know that every nontheorem of S4 can be refuted by a reflexive,
transitive frame. In 4.4 we showed how to extend these results to finite
frames by taking the reflexive transitive counterexample and filtering
it to obtain a finite (and still reflexive, transitive) counterexample.
Our technique here will be similar. By showing how to turn a reflexive
transitive model into a topological model (in a truth preserving way),
we will show that any Kripke counterexample can be turned into a
topological counterexample. Thus showing the topological semantics
are complete.

Theorem 5.12. Every reflexive, transitive Kripke Model (W,R, v)
defines a Topological Model (X, τ, v′) with the same theory.

Proof. Let (W,R) be a reflexive and transitive Kripke Frame. We call
a subset U ⊆W an “up-set” if whenever u ∈ U and uRv means v ∈ U
too.2 We define a topology on W by declaring

τ = {U ⊆W | U is an up-set}.

Notice τ is indeed a topology: W is an up-set, since it contains
everything in particular everything bigger than any given element in
w. If U and V are up-sets, then so is U ∩ V . This is because, given
x ∈ U ∩ V and xRy, y ∈ U (since U is an up-set) and y ∈ V (since
V is an up-set). Then y ∈ U ∩ V and so U ∩ V is an up-set. Finally,
given an arbitrary union

⋃
Ui of up-sets Ui, if x ∈

⋃
Ui, then x ∈ Ui

2This phrasing comes from partial orders, where we think of uRv as “u is less
than v”. Then an up-set is a set of elements which is “closed upwards”. If u is in
the set, then anything bigger than u is too.

110 CHAPTER 5. TOPOLOGICAL SEMANTICS

for some particular i. If xRy, then y ∈ Ui (since Ui is an up-set), and
then y ∈

⋃
Ui too! So

⋃
Ui is an up-set, and the set of up-sets is a

topology on W !
We need one more fact before we move on, and that is R(x) is open

in this topology. It suffices to show R(x) is an up-set, so let y ∈ R(x)
and yRz. Then, by transitivity xRz too. So z ∈ R(x) and R(x) is an
up-set. Indeed, R(x) is the smallest up-set containing x. If x ∈ U and
xRy, y ∈ U too. So R(x) ⊆ U .

We now claim that a world w ∈W satisfies

(W,R, v), w � ϕ ⇐⇒ (W, τ, v) � ϕ

That is, worlds have the same theory if we interpret the semantics as
kripke frames or topologically. We prove this, of course, by induction
on the structure of formulas.

When p is primitive, then

(W,R, v), w � p ⇐⇒ w ∈ v(p) ⇐⇒ (W, τ, v) � p.

Similarly,

(W,R, v), w � ϕ ∧ ψ ⇐⇒ (W,R, v), w � ϕ and (W,R, v), w � ψ

⇐⇒ (W, τ, v), w � ϕ and (W, τ, v), w � ψ

⇐⇒ (W, τ, v), w � ϕ ∧ ψ

and

(W,R, v), w � ¬ϕ ⇐⇒ (W,R, v), w 6� ϕ
⇐⇒ (W, τ, v), w 6� ϕ
⇐⇒ (W, τ, v), w � ¬ϕ

In both of these cases, the middle ⇐⇒ comes from the inductive
hypothesis.

Finally, we have

(W,R, v), w � �ϕ ⇐⇒ ∀w′ ∈ R(w).(W,R, v), w′ � ϕ

⇐⇒ ∀w′ ∈ R(w).(W, τ, v), w′ � ϕ

⇐⇒ (W, τ, v), w � �ϕ

5.5. COMPLETENESS 111

Here the middle ⇐⇒ is the inductive hypothesis, and the last
⇐⇒ is because any open set U witnessing (W, τ, v), w � �ϕ must
contain R(w), so we might as well take R(w) as the witness! �

Corollary 5.13. S4 is complete with respect to the class of all topological
models

Proof. It suffices to show that any nontheorem of S4 is refuted on some
topological model. Let ϕ be a nontheorem of S4. By completeness of
S4 with respect to Kripke Semantics of reflexive transitive graphs, fix a
kripke model which refutes ϕ. Then by the above theorem, transform
it into a topological model with the same theory. In particular, this
topological model refutes ϕ, as desired. �

Ex. 5.28 —

Show the class of topological spaces with a bonus property is sound
wrt some new axioms

Ex. 5.29 —

We can discuss definable properties of a topological space, analogous
to the definable classes of frames, by saying a class C of topological
frames is defined by a set of formulas Σ whenever (X, τ) ∈ C ⇐⇒
(X, τ) � Σ. Show the following properties are definable

a.

b.

c.

Ex. 5.30 —

Show S5 is sound with respect to topologies where every closed set is
open. Such topologies are called “Locally indiscrete”.

Ex. 5.31 —

Given a reflexive transitive frame F, call F ⊆ F a down-set if and only
if x ∈ F and yRx implies y ∈ F . Show the down-sets are exactly the
closed sets of the Alexandroff Topology associated to F.

Ex. 5.32 —

112 CHAPTER 5. TOPOLOGICAL SEMANTICS

The topology we constructed for the completeness proof has the property
that every x has a smallest open set containing it (namely R(x)). Such
topologies are called Alexandroff.

a. Show a space is Alexandroff if and only if the intersection of
any family of open sets is open (as opposed to just a finite
intersection). This is the “standard” definition of Alexandroff
Spaces.

b. Show S4 is complete with respect to the class of Alexandroff
Spaces

c. Show we can run the construction in reverse. That is, show
every Alexandroff space has an associated (reflexive, transitive)
frame such that the theory of a world is the same regardless of
if we use topological or kripke semantics.

Ex. 5.33 —

Show every finite topological space is Alexandroff

Ex. 5.34 —

Show S4 is complete with respect to finite topological spaces

Ex. 5.35 —

A topological space (X, τ) is called T0 if for every two points x, y ∈ X
there is an open set U which contains exactly one of the two points.

a. Find a bijection between finite partial orders and finite T0

spaces.

b. Show, moreover, that the order-preseriving maps betwen finite
partial orders are in bijection with the continuous maps between
the associated finite T0 spaces.

Explicitly, let (X,�X), (Y,�Y) be finite partial orders and (TX, τX)
and (TY, τY) be the associated finite T0 spaces. Show there is a
bijection between functions f : X → Y satisfiying x �X x′ =⇒
f(x) �Y f(x′) and continuous functions from TX to TY .

Ex. 5.36 —

As with the proof of Kripke Completeness, we will define a topological
space from our maximally consistent sets. Indeed, let X be the set
of S4-maximally consistent sets of formulas, and topologize X by

5.6. DYNAMIC TOPOLOGICAL LOGIC 113

declaring each U�ϕ = {Σ ∈ X | �ϕ ∈ Σ} open. Then τ is the set
of arbitrary unions of these basic open sets.
Intuitively, this is because we want �ϕ to denote an open set (since
we interpret � as the interior operator). Eventually we will want
Σ � ϕ ⇐⇒ ϕ ∈ Σ, as before, so we will preemptively make J�ϕK
open by making them open.

a. Show that τ is indeed a topology.

b. As before, define the valuation function v by v(p) = {Σ | p ∈ Σ}.
Show that Σ � ϕ ⇐⇒ ϕ ∈ Σ.

c. Finally, conclude (X, τ, v) � ϕ ⇐⇒ S4 ` ϕ, and thus S4 is
complete with respect to the class of topological models.

Ex. 5.37 —
Something to do with MultiAgent Epistemic Logics?

5.6 Dynamic Topological Logic

5.6.1 S4C

Since topological spaces have richer structure than kripke structures,
it makes sense to try using more powerful logics with this structure.
An important one is Dynamic Topological Logic, which gives us a
way to model the truth of certain propositions changing over time.

The language of DTL is the same as the basic modal language, with
an extra symbol©. We interpret© using a function f : X → X, and
say that

x �©ϕ ⇐⇒ f(x) � ϕ.

One way to interpret this is as time evolution. Whenever f is applied to
all of X, points move around. Perhaps our topological space represents
the water in a river. If we think about f as sending a particular
water molecule to where in the river it is after a second passes, then
repeatedly applying f allows us to approximate how the river flows.

These kinds of spaces are called Dynamical Systems and are a
source of active study in both pure and applied mathematics. One way
of studying these spaes is by studying the sentences of DTL which our
system validates. It is this point of view which we will take in this
section.

114 CHAPTER 5. TOPOLOGICAL SEMANTICS

Definition 5.14. A Dynamic Topological System is a tuple (X, τ, f)
where (X, τ) is a topological space and f : X → X is a continuous
function.

Moreover, a Dynamic Topological Model is a tuple (X, τ, f, v)
where (X, τ, f) is a dynamic topological system, and v is a valuation
function.

With our semantics in hand, we use a proof theory S4C. In addition
to the axioms and rules of inference for S4, we add the following rules
mediating the interactions between © and �.

©(ϕ→ ψ)→©ϕ→©ψ

©¬ϕ↔ ¬© ϕ

©�ϕ→ �© ϕ

ϕ

©ϕ

This proof theory is sound and complete with respect to the class
of all dynamic topological models, and has the finite model property,
as we will see.
Adam - do you know any good proofs of completeness/fmp? All the ones I’ve found are somewhat
elaborate

5.6.2 True DTL
Adam - do you know any fun results to put here? A quick glance at the literature seems to show
that we don’t know that much about DTL, but maybe I was looking at the wrong papers

This actually brings us to the cutting edge of research! The logic
DTL which is studied right now augments S4C with one more modality,
∗, which plays the role of “Henceforth”. We say ∗ϕ is true if ©ϕ, and
©©ϕ, and©©©ϕ, and so on are all true. In terms of the denotation,
this says that

J∗ϕK =
⋂
f−nJϕK

While sound axiomatizations for this logic exist, there are no known
complete axiomatizations. In fact, there is evidence suggesting there

5.6. DYNAMIC TOPOLOGICAL LOGIC 115

is no complete, finite axiomatization. If we’re already losing nice
properties like completeness, one might suspect other nice properties
to fail too, and indeed this logic is not decidable.
href some papers

.
This makes a certain amount of sense, since the addition of ∗ allows

us to express the asymptotic behavior of f , and dynamical systems can
behave quite chaotically. As a simple example, the mandelbrot set
and other fractal patterns are related to nothing but the iteration of
continuous functions – it seems reasonable that asking for a complete
description of the asymptotic behavior might be too much.

116 CHAPTER 5. TOPOLOGICAL SEMANTICS

Chapter 6

Propositional Dynamic
Logic

6.1 Intro

One of the most active areas of research in modal logic right now is in
Programming Language Theory and Program Verification. It should
go without saying that, for certain applications, writing code which
provably does what we expect it to, and perhaps more importantly,
provably can’t do what we don’t expect it to, is incredily important.

It is unfortunate that proving properties about code, especially in
enormous code bases, is incredibly difficult. Wouldn’t it be nice if we
could have our code prove itself correct when we compile it? This is
one of the dreams of PL Theory – to have code which, if it compiles,
must be correct. While many of the systems that exist today place a
large burden on the programmer to assist the compiler in checking the
correctness of the code, a lot of people are working very hard to make
these tools easier to use.

6.2 Syntax

PDL is an extension of Temporal Logic, where we have a modality for
each program we could possibly run. We write [π] and 〈π〉 for the box

117

118 CHAPTER 6. PROPOSITIONAL DYNAMIC LOGIC

and diamond modalities of a program π, and we most commonly want
to write expressions of the form ϕ→ [π]ψ. We can read this as “If ϕ
holds, then after we execute π, ψ will hold. These are typically referred
to as preconditions and postconditions, and tell us what our program
should do. There are various flavors of PDL for various applications
(often they are meant to mimic real-world programming practices),
but in this chapter we will describe a rather basic one. As we will see,
though, it is already expressive enough to prove the correctness of a
lot of C-like code (albeit with some help from the programmer).

First, we need to talk about what a program is. For us, there will
be only a few basic constructs. In the exercises, you will explore logics
with more “primitive programs”. Even a small imperative programming
language has features for assigning values to variables, if/then statements,
and while loops. We will work with a programming language which
only has these features, to show the fundamentals of PDL. Our grammar
will be more complicated now, and will be made of several parts. This
is because our logic and our programs will refer to each other!

α, β ::= π | ϕ? | α ∪ β | α;β | α∗

ϕ,ψ ::= p | > | ϕ ∧ ψ | ¬ϕ | [α]ϕ

We have two grammars, one for programs and one for PDL which
refer to each other. The PDL system should be fairly familiar, with
primitive propositions p, and familiar ways to combine formulas. We
now explicitly add a symbol for > which means “true”. This will be
convenient when expressing that we make no assumptions on our code.
We also have a whole family of box-like modalities [α] – one for every
possible program! These mean “after every possible execution of α, ϕ
is true”. Since our code is nondeterministic in general, there might be
multiple states we could end at. Of course, we still have the tyipcal
abbreviations for ∨, →, and ↔. Plus, we write 〈α〉ϕ for ¬[α]¬ϕ. We
interpret 〈α〉ϕ as “after at least one execution of α, ϕ is true”.

Our programs are made from primitive programs π. Much like
the primitive propositions tell us what questions we are allowed to
ask, the primitive programs tell us what we are allowed to do in our
programming language. We also have ϕ?, which is a harsh if-statement
based on formulas ϕ. Program execution stops if ϕ is false, and

6.2. SYNTAX 119

continus if ϕ is true. We also have α ∪ β, which randomly picks one
of α or β to run. α;β sequences programs, by running α and then
running β. α∗ runs α repeatedly some number of times, and is our
basic looping construction.

In the interest of small examples, we will restrict the primitive
programs and propositions fairly heavily. The propositions will only be
allowed to compare two expressions of variables, where an expression
is comprised of +,*,-,/ and real-valued constants. The primitive
programs are allowed to set variables to expressions involving existing
variables. We will write this as x := e. In real world applications, one
wants more programs and propositions, but we will keep it simple.

Let’s write a few example programs to get the hang of these. This
program sets x to 7, y to 3, and then (if x+ y > 9) sets z to x+ y.

x := 7 ; y := 3 ; (x+ y > 9)? ; z := x+ y

We can express “If T then α else β” as follows:

(T? ; α) ∪ (¬T? ; β)

We can also express “While T α then β” with

(T? ; α)∗ ; ¬T?;β

Here’s a program which computes x! and puts it in y. We know
that the starred section will loop until x = 0, because the program
cannot do anything else until ?x = 0 is true after the loop.

y := 1; (x > 0? ; y = y ∗ x ; x = x− 1)
∗

;x = 0?

Using this language, we can try to express the correctness of the
factorial code above. We will abbreviate it as fact in the interest of
conciseness.

(x > 0)→ [fact]y = x!

Ex. 6.1 —
Translate this code into PDL

Ex. 6.2 —
Translate this PDL into pseudocode

120 CHAPTER 6. PROPOSITIONAL DYNAMIC LOGIC

Ex. 6.3 —

Here is a version of PDL with arrays. Write code that does something.

6.3 Semantics

Now that we know what our logic is allowed to say, we need to know
what it means when it says something. It is time to move on to
semantics, and hopefully the interpretation of PDL should line up
with our intuition for how programs execute. We still consider a set of
possible worlds, where now a world represents the state the program
is in. Using our same primitive programs and propositions, this will
mean worlds keep track of values for each of the variables.

In general, we think of an interpretation of a primitive program π
as being a relation Rπ ⊆W ×W . Just as we can interpret a primitive
proposition p as a subset v(p) of worlds. From these two base cases, we
inductively define relations for every program α, as well as semantics
for the truth of every formula ϕ.

We interpret ∧ and ¬ as we usually do, and [α]ϕ will, as usual,
ask if every world related to the current world by Rα (which we will
define shortly) satisfies ϕ. We will change our language somewhat for
the current application, and we will say “after executing α” to mean
the worlds reachable by Rα.

We define Rϕ? to be {(w,w) | w |= ϕ}. That is, Rϕ? only has self
loops, and even then only has self loops at the worlds satisfying ϕ.

We define Rα∪β is just Rα∪Rβ , since we can execute either function
nondeterministically.

Since α;β comes from running α, then running β, we will say
wRα;βw

′ if and only if wRαw
′′Rβw

′ for some w′′. That is, if we can
get from w to w′ by first executing α, and then executing β.

Finally Rα∗ = R∗α, the reflexive transitive closure of Rα. The
following example includes all of these, and afterwards we will see an
example of the factorial function from above executing.

6.3. SEMANTICS 121

A bunch of worlds with variable assignments to x, y, z.
Showcase each of the above relations

Missing

figure

Factorial of 4, with all of the necessary relations

Missing

figure

These semantics are designed to reflect the way that programs
actually execute, and by reasoning formally about this system, we
can show that our programs satisfy their specification. Of course, this
model just abstracts program states. Reasoning about these semantics
has not made our life any easier – indeed many many programmers
get by by pretending programs are just variable assignments (maybe
with some other assignments and state too) and basically tracing code
executions in their head. The real power of PDL comes from the
proof theory, which lets us say that certain programs will satisfy their
specification without having to reason about the semantics at all.

Ex. 6.4 —

Here’s a short program α, here’s 4 worlds w. What is Rα(w) in each
case?

Ex. 6.5 —

Same as above, for a different α.

122 CHAPTER 6. PROPOSITIONAL DYNAMIC LOGIC

Ex. 6.6 —
What should JϕK be in PDL? Give a recursive construction like those
seen in 2.21 and 5.8

Ex. 6.7 —
Show [ϕ?]ϕ is valid on each model of PDL.

6.4 Proof Theory

The time has come to introduce a proof theory for PDL. In chapter
2, we mentioned that proof theory, while tedious, was one of the most
powerful parts of logic, and this is where we finally see it pay dividends.
Reasoning about possible states of program execution and relations on
this set of worlds, we can instead mindlessly push symbols around –
a task well suited for computers. Without further ado, we take the
following (plus all of CPL) as axioms:

[α](ϕ→ ψ)→ [α]ϕ→ [α]ψ

[ϕ?]ψ ↔ (ϕ→ ψ)

[α ; β]ϕ↔ [α][β]ϕ

[α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

[α∗]ϕ↔ ϕ ∧ [α][α∗]ϕ

[α∗](ϕ→ [α]ϕ)→ ϕ→ [α∗]ϕ

We also take the following rules of inference:

ϕ→ ψ ϕ

ψ

ϕ

[α]ϕ

6.4. PROOF THEORY 123

The first axiom says that every program functions like a � modality.
Such modalities are called normal, and they are without contest the
most common modalities studied. The second is for ϕ?. Recall [ϕ?]ψ
is true vacuously if a world doesn’t satisfy ϕ, since then the relation
is empty. If ϕ is satisfied, then we want to know ψ is as well. That is
exactly asking if ϕ → ψ. The third says that x sees y after running
α ; β if and only if x sees y after running α, then after running β.
The fourth says that the only way to guarantee a formula holds after
running α or β is to guarantee it holds after running α and after
running β individually. Since we don’t know which will run, we have
to check both. Then we say that [α∗]ϕ is true exactly when ϕ is true
at the current world, and (if we execute α once) [α∗]ϕ stays true in
the future. Finally, we say that we are “allowed to induct” to prove
things about α∗. If everywhere I can reach by running α thinks that
ϕ → [α]ϕ is true, and I am in a ϕ world, then I must be in an [α]ϕ
world. So I take take one step forward along Rα and end up in a
ϕ world. But then this new world must also satisfy ϕ → [α]ϕ and
so after taking another step I find myself in a ϕ world. Proceeding
inductively, we see that every world reachable by some number of α
executions is a ϕ world. That is, our starting world was a [α∗]ϕ world.
This axiom is typically called the “Loop Invariant” axiom, as it lets us
reason about loop structures by asserting that a loop invariant holds.
By a “loop invariant”, we mean a formula ϕ that is true when we enter
the loop, and which is preserved under each iteration of the loop. We
shall see that these loop invariants are the main source of programmer
overhead, as finding the correct loop invariant to prove a particular
fragment of code correct can be extremely difficult.

6.4.1 Soundness and Completeness

At this point, I’m sure you have a pavlovian reaction to seeing an
axiom system presented, and indeed we will prove that these axioms
are sound and complete with respect to models of PDL. Because these
proofs are routine, and almost exactly like the proofs from chapter 3,
we will leave many of the repeated details to the reader in the interest
of space.

Soundness is easy, as usual. We leave the proof as an exercise.

124 CHAPTER 6. PROPOSITIONAL DYNAMIC LOGIC

Theorem 6.1. The stated axioms are sound with respect to the class
of all models of PDL

Proof. Exercise 6.8 �

The more interesting theorem is completeness, which we will show
now. We will use the same technique as before, by creating a canonical
model with maximally consistent sets as worlds. However this time,
the proof will not quite work, since (as we will see) R∗α will not be the
same as Rα∗ . After modifying the model slightly to fix this defect,
we will obtain a canonical model. We will emphasize the details that
have changed, or which require extra care in the PDL setting. Most
of the proof works exactly as in the completeness of K, though.

Theorem 6.2. The stated axioms are complete with respect to the
class of all models of PDL

Proof.
I need to wave my hands WAY less vigorously in this proof. Unfortunately, I ran out of time :(

As before, we will construct a model CPDL as follows:

• W is the set of maximally consistent sets of formulas.
• The relation for a program α is given by

Rα = {(Σ,∆) | {ϕ | [α]ϕ ∈ Σ} ⊆ ∆}

• The valuation of some primitive proposition p is given by

v(p) = {Σ | p ∈ Σ}

A simple induction on formulas shows that

CPDL,Σ |= ϕ ⇐⇒ ϕ ∈ Σ

There is only one, mild issue: Notice this model was defined in
terms of all programs α, not just the primitive programs π. Unfortunately,
it does not work to just define Rπ for primitive programs and extend
the definitions as we have done before. Because of this, we will need
to verify manually that, for instance Rα∪β = Rα ∪ Rβ . Thankfully,
almost all of these work out.

6.4. PROOF THEORY 125

What is tragic, however, is that Rα∗ is not R∗α. So this model is
not really a model of PDL. Luckily for us, it is close enough to being
a model of PDL that we can fix it on a formula by formula basis.

Let ϕ be a nontheorem of PDL. Then {¬ϕ} is consistent, and so
we can grow it to a maximally consistent set Σ (cf. exercise 6.9).
Now CPDL,Σ 6� ϕ, and so all we need to do is turn this into an
honest-to-goodness model of PDL. We will define a levelled up notion
of filtration to create such a model.

Call a set Γ of formulas closed if:

• Γ is subformula closed
• [ϕ?]ψ ∈ Γ implies ϕ ∈ Γ
• [α;β]ϕ ∈ Γ implies [α][β]ϕ ∈ Γ
• [α ∪ β]ϕ ∈ Γ implies [α]ϕ, [β]ϕ ∈ Γ
• [α∗]ϕ ∈ Γ implies [α][α∗]ϕ

Notice we can close any set of formulas by first closing it under
subformulas, and then adding in all of the things which the later rules
require. If our initial set of formulas was finite, we will even be left
with a finite set Γ, since the complexity of the programs on the right
of the implication is less than the complexity of the programs on the
left (exepct for [α∗], but it is clear that [α][α∗]ϕ will not require we
add any additional programs for Γ to be closed).

This tells us that the smallest closed set of formulas Γ containing
¬ϕ is finite and subformula closed. So we can filter through it in
order to get a finite model, which we will now verify is a real model of
PDL. Since filtrations preserve truth (of formulas in Γ), this will be a
model refuting ϕ. Indeed, it will be a finite model, which will get us
decidability for free!

Let ΠΓ be the set of all programs including atomic programs in
members of Γ, all programs ψ? for ψ ∈ Γ, and closed under ;, ∪, and
∗.

We define a new model MΓ as usual, with equivalence classes of
worlds of CPDL based on truth of sentences in Γ and the obvious
valuation function. We define RΓ

π for π ∈ ΠΓ to be as in section
4.4 for each Rπ defined on CPDL. We further define

RΓ
ϕ? = {([Σ], [Σ]) | CPDL,Σ |= ϕ}

126 CHAPTER 6. PROPOSITIONAL DYNAMIC LOGIC

and we inductively define RΓ
α for the extensions by ;, ∪, and ∗ as usual.

Finally, we claim MΓ, [Σ] |= ϕ whenever ϕ ∈ Γ and CPDL,Σ |= ϕ.
We have to check that the filtered version of Rα is Γ-appropriate
(cf. exercise 4.7) for each program α. To save the reader some
page-flipping, it suffices to show

• xRαy =⇒ [x]RΓ
α[y]

• if [x]RΓ
α[y], then for every �ϕ ∈ Γ, if x |= �ϕ then y |= �ϕ

We will show this by an induction on α.
The case of primitive π ∈ ΠΓ holds by definition.
If ϕ? ∈ ΠΓ, suppose ΣRϕ?∆. Then if ψ ∈ Σ, ϕ → ψ ∈ Σ, so

[ϕ?]ψ ∈ Σ. So ψ ∈ ∆. Thus Σ ⊆ ∆, and so Σ = ∆ since Σ is
a maximal. Moreover, since [ϕ?]ϕ is valid (exercise 6.7), we have
ϕ ∈ ∆ = Σ and so the first property holds by definition of RΓ

ϕ?.

For the second property, suppose [Σ]RΓ
ϕ?[∆]. Then [Σ] = [∆] and

Σ |= ϕ. So if [ϕ?]ψ ∈ Γ and Σ |= [ϕ?]ψ we have Σ |= ϕ → ψ, and so
Σ |= ψ. But then ∆ |= ψ too, since Σ and ∆ have the same theory
restricted to Γ. Thus RΓ

ϕ? is Γ-apropriate.

For the inductive cases, we will use the following idea: Given Σ,
let θΣ be a formula satisfying

θΣ ∈ ∆ ⇐⇒ [Σ]RΓ
α[∆]

Add a lemma showing such a formula exists. cf. 114 in Goldblatt

Then to show ΣRα∆ implies [Σ]RΓ
α[∆], it will suffice to show

[α]θΣ ∈ Σ, as then θΣ ∈ ∆ and [Σ]RΓ
α[∆], as needed.

For α;β ∈ ΠΓ, inductively assumeRΓ
α andRΓ

β are both Γ-appropriate.
Let θΣ be such that θΣ ∈ ∆ ⇐⇒ [Σ]Rα;β [∆].

For the first condition, say ΣRαΨRβ∆. By induction, we have
[Σ]RΓ

α[Ψ]RΓ
β [∆] and thus [Σ]RΓ

α;β [∆] by definition. So θΣ ∈ ∆, and

[α][β]θΣ ∈ Σ. Thus [α;β]θΣ ∈ Σ and we see [Σ]RΓ
α;β [∆] by the

argument outlined above.
For the second condition, let [Σ]RΓ

α;β [∆]. Then for some [Ψ],

we have [Σ]RΓ
α[Ψ]RΓ

β [∆]. If [α;β]ϕ ∈ Γ and Σ |= [α;β]ϕ we have
Σ |= [α][β]ϕ and is also in Γ by one of the closure conditions. Then
induction gives [β]ϕ true at [Ψ] and thus ϕ true at [∆], as required.

6.4. PROOF THEORY 127

For α ∪ β ∈ ΠΓ, we again take a formula

θΣ ∈ ∆ ⇐⇒ [Σ]RΓ
α∪β [∆]

Then by induction and the definition of RΓ
α∪β , we see θΣ ∈ ∆

whenever ΣRα∆ or ΣRβ∆. So [α]θΣ and [β]θΣ are both in Σ, and the
first condition is met.
I’m torn between leaving part 2 as an exercise like goldblatt, and actually doing it. . .

Finally, we work with α∗. The fact that Rα∗ = R∗α
Finish stealing this proof from Goldblatt 9.8

Thus the filtration is an honest-to-goodness model of PDL, and,
importantly, still refutes ¬ϕ, as desired. �

Corollary 6.3. PDL is decidable

Proof. In the proof of completeness we constructed a finite model
refuting a nontheorem ϕ. Indeed by being more careful with our
bookkeeping, we can bound the size of the Γ we filter through, and
thus the size of the model which will refute it. Simply checking all
models up to this size will give the desired decision procedure. �

Ex. 6.8 —

Prove the soundness theorem for PDL

Ex. 6.9 —

Following the example in chapter 3, prove that every PDL-consistent
set of formulas can be extended to a maximally consistent set of
formulas.

Ex. 6.10 —Complete the proof of completeness by verifying the following:

a. Rα;β = Rα ◦Rβ
b. Rα∪β = Rα ∪Rβ
c. Rϕ? = {(Σ,Σ) | Σ |= ϕ}

128 CHAPTER 6. PROPOSITIONAL DYNAMIC LOGIC

Ex. 6.11 —
Show

PDL ` [αn]ϕ↔ [α]nϕ

Where
αn = α;α; . . . ;α︸ ︷︷ ︸

n times

and
[α]nϕ = [α][α] . . . [α]︸ ︷︷ ︸

n times

ϕ

Ex. 6.12 —
Show PDL ` [α∗]ϕ→ [α]nϕ
add an index

actually set up the bibliography

	I Core Concepts
	Introduction
	A Puzzle
	Applications

	Syntax and Semantics
	Introduction
	Syntax: The Basic Modal Language
	Extensions of the Basic Modal Language

	Semantics: Kripke Frames and Models
	Relational Structures
	Frame Properties
	Operations on Relational Structures
	Models
	Kripke Semantics
	An Example Proof
	Interpretations

	Provability: System K
	Deduction Systems
	System K
	Some Example Derivations

	Other Deduction Systems

	Soundness and Completeness
	Introduction
	The Soundness Theorem
	Completeness
	Maximally Consistent Sets
	Completenesss in Other Modal Logics
	Definability
	Transitivity
	Definability

	Bisimulations and Operations on Frames
	Introduction
	Bisimulations
	Generated Submodels
	Filtration
	Unraveling
	MultiAgent Logic
	Proving Inexpressibility
	Finite Model Property

	II Extended Topics
	Topological Semantics
	Introduction
	Topology
	Examples
	Continuous Maps

	Topological Semantics
	Soundness
	Completeness
	Dynamic Topological Logic
	S4C
	True DTL

	Propositional Dynamic Logic
	Intro
	Syntax
	Semantics
	Proof Theory
	Soundness and Completeness

