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Ansibles in Science Fiction:

- Faster-than-light communication

- Allows colonies, etc. to speak in real time

- Generally helps the plot go brrrrrr

- Notably aphysical -- almost certainly 
impossible
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We only penalize Communication 
between Alyss and Bob
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Some remarks:

● We never need  > n+1  messages

○ Alyss sends  a  to Bob (n messages)

○ Bob computes  f(a,b)

○ Bob sends result to Alyss (1 message)

● So “efficient” means Polylog(n) messages

○ log(n)

○ (log(n))k

○ log(n) log(log(n))

● In general, we want  #messages < log(n)k for some constant k
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Theorem: Eqn is maximally hard 

( That is, D(Eqn) = n+1 )
Let’s see a sample computation with some 
(suboptimal) protocol:

1. Alyss sends her first bit (0) to Bob
This restricts the region of the 
matrix Bob is interested in

2. Maybe Bob sends his second bit (0) 
to Alyss

This restricts the region of 
interest again

3. Then Alyss sends her second bit (1) 
to Bob

This restricts the region again,
and now the  only option is 0!
So we know f(a,b) = 0
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● In general, when we follow some protocol, each message sent restricts the region of 
interest in this matrix. 

● But each region we restrict to is a combinatorial rectangle

● That is, a region of the form A
0

 × B
0

,   for A
0

 ⊆ A and B
0

 ⊆ B

● So! Any protocol correctly computing f must partition our matrix into combinatorial 
rectangles, each of which only has 0s or 1s inside it.

● In ~fancy~ lingo:  Any protocol partitions the matrix into monochromatic rectangles
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Theorem: Eqn is maximally hard 

( That is, D(Eqn) = n+1 )
This entry MUST be a 1x1 rectangle,
as any rectangle containing 2 rows 
(resp. columns) must contain an off diagonal 
entry.

Similarly, each of these must be 1x1 rectangles.

This means any protocol solving Eq
n
 has at 

least 2n rectangles.

But each additional message sent splits a 
rectangle into 2 pieces.

So Eq
n
 requires at least log

2
(2n) = n many 

messages. 



Ok… What if we only want 
to be correct with high 
probability?



Theorem:
Alyss and Bob can communicate
O(log n) bits, so that

1. If a = b, then we always correctly 
say “yes, they’re equal”

2. If a ≠ b, then we incorrectly say 
“yes they’re equal” with probability  < 
1/n

(We say such an algorithm has “one-sided error”)
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Theorem:

In the “public randomness” 
model, Alyss and Bob can solve 
Eqn with probability of a false 
positive < 𝛜 using 
O(log(1/𝛜)) bits of communication

Uniform in n!





















Ok… But how much are we 
cheating by?

What about private coin 
complexity?
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● Now let’s write R𝛜
pub(f) for the Randomized (public) communication complexity

● Similarly, we write R𝛜
priv(f) for the Randomized (private) communication complexity

● (In both, the subscript  𝛜  indicates the tolerance for errors)
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Theorem (Newman):
R𝛜 + 𝛅

priv(f) ≤ R𝛜
pub(f) + O(log(n) + log(1/𝛅))

Says, at the cost of a little bit more error, and log(n) extra 
messages, we can turn a public randomness protocol into a 
private coin protocol.

This agrees with our result from earlier: 
In the “polynomial protocol” only Alyss needed randomness,
and we needed O(log(n)) many messages.

In the public protocol we just discussed, though, we got it 
down to O(1) messages. So we have a disparity of O(log(n)).

Newman’s Theorem says we will never do worse than this.



For more information, see 
Ryan O’Donnell’s            
“CS Theory Toolkit” on 
Youtube.

I’ll link the playlist on my 
blog post for this talk at 
grossack.site



Thank You! ^_^


