
Problem Solving
Without Ansibles:

An Introduction to
Communication Complexity

Chris Grossack (they/them)

Ansibles in Science Fiction:

Ansibles in Science Fiction:

Ansibles in Science Fiction:

- Faster-than-light communication

Ansibles in Science Fiction:

- Faster-than-light communication

- Allows colonies, etc. to speak in real time

Ansibles in Science Fiction:

- Faster-than-light communication

- Allows colonies, etc. to speak in real time

- Generally helps the plot go brrrrrr

Ansibles in Science Fiction:

- Faster-than-light communication

- Allows colonies, etc. to speak in real time

- Generally helps the plot go brrrrrr

- Notably aphysical -- almost certainly
impossible

In the real world...

In the real world...

In the real world...

In the real world...

In the real world...

In the real world...

We only penalize Communication
between Alyss and Bob

Some remarks:

● We never need > n+1 messages

Some remarks:

● We never need > n+1 messages

○ Alyss sends a to Bob (n messages)

○ Bob computes f(a,b)

○ Bob sends result to Alyss (1 message)

●

Some remarks:

● We never need > n+1 messages

○ Alyss sends a to Bob (n messages)

○ Bob computes f(a,b)

○ Bob sends result to Alyss (1 message)

● So “efficient” means Polylog(n) messages

Some remarks:

● We never need > n+1 messages

○ Alyss sends a to Bob (n messages)

○ Bob computes f(a,b)

○ Bob sends result to Alyss (1 message)

● So “efficient” means Polylog(n) messages

○ log(n)

Some remarks:

● We never need > n+1 messages

○ Alyss sends a to Bob (n messages)

○ Bob computes f(a,b)

○ Bob sends result to Alyss (1 message)

● So “efficient” means Polylog(n) messages

○ log(n)

○ (log(n))k

Some remarks:

● We never need > n+1 messages

○ Alyss sends a to Bob (n messages)

○ Bob computes f(a,b)

○ Bob sends result to Alyss (1 message)

● So “efficient” means Polylog(n) messages

○ log(n)

○ (log(n))k

○ log(n) log(log(n))

Some remarks:

● We never need > n+1 messages

○ Alyss sends a to Bob (n messages)

○ Bob computes f(a,b)

○ Bob sends result to Alyss (1 message)

● So “efficient” means Polylog(n) messages

○ log(n)

○ (log(n))k

○ log(n) log(log(n))

● In general, we want #messages < log(n)k for some constant k

A simple example:

A simple example:

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)
Let’s see a sample computation with some
(suboptimal) protocol:

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)
Let’s see a sample computation with some
(suboptimal) protocol:

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)
Let’s see a sample computation with some
(suboptimal) protocol:

1. Alyss sends her first bit (0) to Bob
This restricts the region of the
matrix Bob is interested in

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)
Let’s see a sample computation with some
(suboptimal) protocol:

1. Alyss sends her first bit (0) to Bob
This restricts the region of the
matrix Bob is interested in

2. Maybe Bob sends his second bit (0)
to Alyss

This restricts the region of
interest again

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)
Let’s see a sample computation with some
(suboptimal) protocol:

1. Alyss sends her first bit (0) to Bob
This restricts the region of the
matrix Bob is interested in

2. Maybe Bob sends his second bit (0)
to Alyss

This restricts the region of
interest again

3. Then Alyss sends her second bit (1)
to Bob

This restricts the region again,
and now the only option is 0!
So we know f(a,b) = 0

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)

● In general, when we follow some protocol, each message sent restricts the region of
interest in this matrix.

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)

● In general, when we follow some protocol, each message sent restricts the region of
interest in this matrix.

● But each region we restrict to is a combinatorial rectangle

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)

● In general, when we follow some protocol, each message sent restricts the region of
interest in this matrix.

● But each region we restrict to is a combinatorial rectangle

● That is, a region of the form A
0

 × B
0

, for A
0

 ⊆ A and B
0

 ⊆ B

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)

● In general, when we follow some protocol, each message sent restricts the region of
interest in this matrix.

● But each region we restrict to is a combinatorial rectangle

● That is, a region of the form A
0

 × B
0

, for A
0

 ⊆ A and B
0

 ⊆ B

● So! Any protocol correctly computing f must partition our matrix into combinatorial
rectangles, each of which only has 0s or 1s inside it.

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)

● In general, when we follow some protocol, each message sent restricts the region of
interest in this matrix.

● But each region we restrict to is a combinatorial rectangle

● That is, a region of the form A
0

 × B
0

, for A
0

 ⊆ A and B
0

 ⊆ B

● So! Any protocol correctly computing f must partition our matrix into combinatorial
rectangles, each of which only has 0s or 1s inside it.

● In ~fancy~ lingo: Any protocol partitions the matrix into monochromatic rectangles

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)
This entry MUST be a 1x1 rectangle,
as any rectangle containing 2 rows
(resp. columns) must contain an off diagonal
entry.

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)
This entry MUST be a 1x1 rectangle,
as any rectangle containing 2 rows
(resp. columns) must contain an off diagonal
entry.

Similarly, each of these must be 1x1 rectangles.

This means any protocol solving Eq
n
 has at

least 2n rectangles.

Theorem: Eqn is maximally hard

(That is, D(Eqn) = n+1)
This entry MUST be a 1x1 rectangle,
as any rectangle containing 2 rows
(resp. columns) must contain an off diagonal
entry.

Similarly, each of these must be 1x1 rectangles.

This means any protocol solving Eq
n
 has at

least 2n rectangles.

But each additional message sent splits a
rectangle into 2 pieces.

So Eq
n
 requires at least log

2
(2n) = n many

messages.

Ok… What if we only want
to be correct with high
probability?

Theorem:
Alyss and Bob can communicate
O(log n) bits, so that

1. If a = b, then we always correctly
say “yes, they’re equal”

2. If a ≠ b, then we incorrectly say
“yes they’re equal” with probability <
1/n

(We say such an algorithm has “one-sided error”)

Budget:
O(log(q))

Budget:
O(log(n2))

Budget:
O(log(n))

Budget:
O(log(n))

Budget:
O(log(n))
O(log(𝛂))

Budget:
O(log(n))
O(log(n))

Budget:
O(log(n))
O(log(n))
O(log(n))

Budget:
O(log(n))
O(log(n))
O(log(n))

Budget:
O(log(n))
O(log(n))
O(log(n))
O(1)

Budget:
O(log(n))
O(log(n))
O(log(n))
O(1)

O(log(n))

Can we do better?

Can we do better?
Yes! (If we cheat a little)

Theorem:

In the “public randomness”
model, Alyss and Bob can
solve Eqn with probability of
a false positive < 25% using…

~ Audience Participation ~

Theorem:

In the “public randomness”
model, Alyss and Bob can
solve Eqn with probability of
a false positive < 25% using…

3 bits of communication!

Theorem:

In the “public randomness”
model, Alyss and Bob can solve
Eqn with probability of a false
positive < 𝛜 using
O(log(1/𝛜)) bits of communication

Uniform in n!

Ok… But how much are we
cheating by?

What about private coin
complexity?

Newman’s Theorem

● Before we wrote D(f) for the Deterministic communication complexity of f

Newman’s Theorem

● Before we wrote D(f) for the Deterministic communication complexity of f

● Now let’s write R𝛜
pub(f) for the Randomized (public) communication complexity

Newman’s Theorem

● Before we wrote D(f) for the Deterministic communication complexity of f

● Now let’s write R𝛜
pub(f) for the Randomized (public) communication complexity

● Similarly, we write R𝛜
priv(f) for the Randomized (private) communication complexity

Newman’s Theorem

● Before we wrote D(f) for the Deterministic communication complexity of f

● Now let’s write R𝛜
pub(f) for the Randomized (public) communication complexity

● Similarly, we write R𝛜
priv(f) for the Randomized (private) communication complexity

● (In both, the subscript 𝛜 indicates the tolerance for errors)

Theorem (Newman):

R𝛜 + 𝛅
priv(f) ≤ R𝛜

pub(f) + O(log(n) + log(1/𝛅))

Theorem (Newman):
R𝛜 + 𝛅

priv(f) ≤ R𝛜
pub(f) + O(log(n) + log(1/𝛅))

Says, at the cost of a little bit more error, and log(n) extra
messages, we can turn a public randomness protocol into a
private coin protocol.

Theorem (Newman):
R𝛜 + 𝛅

priv(f) ≤ R𝛜
pub(f) + O(log(n) + log(1/𝛅))

Says, at the cost of a little bit more error, and log(n) extra
messages, we can turn a public randomness protocol into a
private coin protocol.

This agrees with our result from earlier:
In the “polynomial protocol” only Alyss needed randomness,
and we needed O(log(n)) many messages.

Theorem (Newman):
R𝛜 + 𝛅

priv(f) ≤ R𝛜
pub(f) + O(log(n) + log(1/𝛅))

Says, at the cost of a little bit more error, and log(n) extra
messages, we can turn a public randomness protocol into a
private coin protocol.

This agrees with our result from earlier:
In the “polynomial protocol” only Alyss needed randomness,
and we needed O(log(n)) many messages.

In the public protocol we just discussed, though, we got it
down to O(1) messages. So we have a disparity of O(log(n)).

Theorem (Newman):
R𝛜 + 𝛅

priv(f) ≤ R𝛜
pub(f) + O(log(n) + log(1/𝛅))

Says, at the cost of a little bit more error, and log(n) extra
messages, we can turn a public randomness protocol into a
private coin protocol.

This agrees with our result from earlier:
In the “polynomial protocol” only Alyss needed randomness,
and we needed O(log(n)) many messages.

In the public protocol we just discussed, though, we got it
down to O(1) messages. So we have a disparity of O(log(n)).

Newman’s Theorem says we will never do worse than this.

For more information, see
Ryan O’Donnell’s
“CS Theory Toolkit” on
Youtube.

I’ll link the playlist on my
blog post for this talk at
grossack.site

Thank You! ^_^

