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\ Ansibles in Science Fiction:

- Faster-than-light communication
- Allows colonies, etc. to speak in real time
- Generally helps the plot go brrrrrr

- Notably aphysical -- almost certainly
impossible
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We only penalize Communication
between Alyss and Bob
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Some remarks:

e Wenever need >n+1 messages
o Alysssends a to Bob (n messages)
o Bobcomputes f(a,b)
o Bobsends result to Alyss (1 message)

e So “efficient” means Polylog(n) messages
o log(n)
o (log(n))*
o log(n) log(log(n))

e Ingeneral, we want #messages < log(n) for some constant k
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(Thatis, D(Eg ) = n+1)
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(suboptimal) protocol:

a}&(/s ’ 1. Alysssends her first bit (0) to Bob

This restricts the region of the
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Let’s see a sample computation with some
(suboptimal) protocol:

'T C—» 1. Alysssends her first bit (0) to Bob
> This restricts the region of the
matrix Bob is interested in

This restricts the region again,
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and now the only option is O!
6 So we know f(a,b) =0
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(Thatis, D(Eg ) = n+1)

e Ingeneral, when we follow some protocol, each message sent restricts the region of
interest in this matrix.

e Buteachregion we restrict toisacombinatorial rectangle
e Thatis,aregionof theformA x B, forA, S AandB, < B

e So! Any protocol correctly computing f must partition our matrix into combinatorial
rectangles, each of which only has Os or 1s inside it.

e In~fancy~ lingo: Any protocol partitions the matrix into monochromatic rectangles
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Theorem: Eq_ is maximally hard

(Thatis, D(Eg ) = n+1)

This entry MUST be a 1x1 rectangle,

as any rectangle containing 2 rows

(resp. columns) must contain an off diagonal
entry.

Similarly, each of these must be 1x1 rectangles.

()

©

ol o o () ©
@ This means any protocol solving Eq_has at

least 2" rectangles.

Oo ]| 10 ) But each additional message sent splits a
rectangle into 2 pieces.

So Eq_ requires at least log,(2") = n many
messages.



Ok... What if we only want
to be correct with high

probability?



Theorem:
Alyss and Bob can commmunicate
O(log n) bits, so that

1. If a = b, then we always correctly
say ‘yes, they're equal”

2. 1f a # b, then we incorrectly say
‘yes they're equal” with probability <
1/n

(We say such an algorithm has “one-sided error”)
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Yes! (If we cheat a little)
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Theorem:

INn the “public randomness”
model, Alyss and Bob can solve \
Eqg  with probability of a false

positive < € Using
O(log(1/e€)) bits of communication

Uniform in n!
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Ok... But how much are we
cheating by? \

What about private coin
complexity?
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Newman's Theorem

e Before we wrote D(f) for the Deterministic communication complexity of f
e Nowlet'swrite Rep“b(f) for the Randomized (public) communication complexity
e Similarly, we write R(p”"(f) for the Randomized (private) communication complexity

e (Inboth, the subscript € indicates the tolerance for errors)
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Theorem (Newman):
Re+sP™V(f) < RPYP(f) + O(log(n) + log(1/8))

Says, at the cost of a little bit more error, and log(n) extra
messages, we can turn a public randomness protocol into a
private coin protocol.

This agrees with our result from earlier:
In the “polynomial protocol” only Alyss needed randomness,
and we needed O(log(n)) many messages.

In the public protocol we just discussed, though, we got it
down to O(1) messages. So we have a disparity of O(log(n)).

Newman’s Theorem says we will never do worse than this.



For more information, see
Ryan O'Donnell's

“*CS Theory Toolkit” on
Youtube.

I'll link the playlist on my
blog post for this talk at
grossack.site
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