
Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Programming for Category Theorists
Categorical Semantics for Functional Programming Languages

Chris Grossack
(they/them)

November 24, 2020

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

This is going to be an entry level talk

We’re going to describe some deep connections between Category
Theory and Functional Programming

This should motivate some of the constructions for people new to
the field

It may also provide a new lens for viewing some constructions you’re
already familiar with

Ideally, by the end of the talk, you’ll feel like some seemingly abstract
constructions arise very naturally in the context of programming

In the interest of keeping the talk elementary, I’ve left out the
beautiful connection this topic has with proof theory.

You can find the slides posted on my website grossack.site

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Let’s Start!

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Let’s start with a toy programming language.

We’ll add features over the course of the talk.

In the beginning, we have a glorified calculator:

Toy Language: Mk. I

e ::= T | F | n | e1 + e2 | if e1 then e2 else e3

This is called a grammar, and defines the syntax of our language

Informally, we can use any of the symbols separated by |, and ei
should be interpreted recursively as a pre-existing expression.

Some examples should show exactly what is meant

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Toy Language: Mk. I

e ::= T | F | n | e1 + e2 | if e1 then e2 else e3

T
5
5+ 3
if T then 4 else 2+ 3
(if F then 3 else 4) + 0

We currently allow “bad”
expressions too
F+ (T + 3)
if 4 then T else F

Important Question:

What do we do about “bad” expressions?

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Answer 1:
Accept the expressions for who they are
They’re not bad. . . Just misunderstood
Pick a convention to interpret them: e.g.

F ≈ 0, T ≈ 1
0 ≈ F , n ≈ T

This was popular in the ’90s and ’00s:
Javascript, Python, Perl, PHP, etc.

Falling out of favor, as it leads to tricky bugs and weird behavior
This led to a rather famous meme:

(You can find this and other strange behavior at javascriptwtf.com)

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Answer 2:
Find a way to exclude these expressions.
They aren’t loved. They aren’t wanted.
This is the current trend in programming languages

Types

What went wrong?
T+ 5 isn’t meaningful because T is the wrong type of object.
Let’s add Types to our langauge and only allow expressions whose
types are "what we expect"

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Toy Language: Mk. II

e ::= T | F | n | e1 + e2 | if e1 then e2 else e3

τ ::= B | N

We also have to provide rules which say what the type of an
expression is, and how they interact.

I’ll show these exactly once, for cultural growth. But they quickly
get complicated, so I’ll omit them in the future and make sure the
typing rules are clear from context.

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Toy Language: Mk. II

e ::= T | F | n | e1 + e2 | if e1 then e2 else e3

τ ::= B | N

T : B F : B n : N

e1 : N e2 : N
e1 + e2 : N

e1 : B e2 : τ e3 : τ
if e1 then e2 else e3 : τ

(This is where the beautiful connection with proof theory lies)

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

This is a pretty silly programming language

It’s really a calculator that only knows about addition

We aren’t programming until we can define functions

Let’s go ahead and add some syntax for that!

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

The infamous λ-calculus

We first allow expressions to contains variables: e.g.

x + 5

if b then y + 1 else 3+ 2

Then we add syntax to bind a variable as the argument of a
function:

λ(x : N).x + 5

λ(b : B).λ(y : N).if b then y + 1 else 3+ 2

We often want a function to return multiple outputs

So we add syntax for tuples of expressions:

(5, T)

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Toy Language: Mk III.

e ::= T | F | n | e1 + e2 | if e1 then e2 else e3
| x : τ | λ(x : τ).e | e1(e2) | (e1, e2) | πL(e) | πR(e)

τ ::= B | N | τ1 → τ2 | τ1 × τ2

λ(x : N).x : N→ N

(λ(x : N).x + 3)(4) : N

(5, T) : N× B

πR(5, T) : B

λ(b : B).if b then (λ(x : N).x + 1) else (λ(x : N).x + 2)
: B→ (N→ N)

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Some Pressing Questions

Ok, I hear you asking

This is cool and all, but I was promised Category Theory

More pressingly, how do we evaluate one of these programs?

There’s an “obvious” way to do it, but how do we make it formal?

Why can’t 3+ 5 15?

These are some very astute questions, Socratic Dialogue partner!

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Syntax and Semantics

If you hang out with me long enough, you will hear me rant about
∼ ? ∼ Syntax and Semantics ∼ ? ∼

Syntax is the rules for writing things down

Semantics tell you what the syntax means

We’ve discussed the Syntax of our programming language, but we
haven’t said anything about the Semantics!

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

S’n’S: Pt 2. Enter Categories

The important observation is this:

We can use Categories to interpret our programming language

We will have an object for every type τ

And we will have an “element” for every program of type τ

Here by “element”, I mean an arrow 1
p→ τ from the terminal object

As we make our programming language more expressive, we will
need more structure on the categories in which we can interpret it

Let’s see some examples, though.

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Let’s start small: How can we interpret some of our calculator programs
in Set?

Semantics in Set
We first pick a set for each type. Since we’re just starting out, take

B = {0, 1}
N = {0, 1, 2, . . .}

Then we pick an element for each value
T = 1 ∈ B F = 0 ∈ B
n = n ∈ N

Then, for each recursively defined term, we pick a function defined
on the relevant set

N× N +−→ N
B× N× N if−then−elseN−−−−−−−−−→ N
B× B× B if−then−elseB−−−−−−−−−→ B

Again, let’s pick the obvious functions based on the syntax

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Now we can interpret programs by composing these arrows! The fact
that this diagram commutes expresses the fact that 5+ 3 evaluates to 8

1 1× 1 N× N N

1 N

∼ (3,5) +

8

The top path is the program 5+ 3, and the bottom is the program 8.
Commutativity says exactly that these are actually the same program!

(There is a subtle point here about the difference between equality of
programs and evaluation that I’m going to gloss over)

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

How do we interpret λ(x : τ).e?

It should be some object whose elements correspond to arrows. . .

For instance, if e = x + 5, then e is an arrow N x+5−−→ N

Then we want 1
λ(x :N).x+5−−−−−−−→ NN to be an element of

NN = {f : N→ N}

As an aside, notice e is not an element. The elements in our
category correspond with the closed terms. That is, the programs
with no free variables.

More to the point – what categorical structure do we need to
interpret λ terms in this way?

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

A suggestive detour

At this point I will, for no apparent reason, recall the notion of a
Cartesian Closed Category

Definition
A Category is called Cartesian Closed whenever it has

All finite products
So if A and B are objects, then there is an object A× B satisfying
some universal property
Note “finite” here includes 0. So there is also a Terminal Object 1,
the empty product.

“Exponential Objects” BA for every object A and B.
The elements of BA correspond exactly to arrows A→ B.
BA also comes equipped with an “evaluation map” ε : BA × A→ B
which does the obvious thing

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Remarkably, the notion of “programming language” we’ve built up so
far has led us to the central notion of Cartesian Closedness!

Notice also that we can interpret our programs in any Cartesian
Closed Category C:

First pick objects B and N to represent B and N

We then use cartesian closedness to interpret

product types by the product in C

function types by the exponential in C

Then pick elements 1→ B and 1→ N for T, F, and every n.

Lastly, pick arrows to interpret + : N× N→ N and
if-then-elseτ : B× τ × τ → τ (for every type τ)

Then doing this, all of our programs correspond to arrows in this
category, and the programs with no free variables are all given by
elements. So running the program amounts to figuring out which
element it names!

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

We can run this argument in reverse too!

Take your favorite Cartesian Closed Category C
We can build a programming language out of C as follows:

Add a type τA for every object A in C

Add a value x : A for every element 1 A−→
x

Add an expression ef for every arrow f : A→ B

Then studying interpretations of this programming language in other
Cartesian Closed Categories helps you understand the interactions
between that category and the one you started with

This programming langauge is called the Internal Logic of C

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Ok. That was the big jump in abstraction.

If you stuck with me through that, the rest of the talk is smooth sailing

Even if you didn’t, the rest of the talk is easier
(so now is a good time to tune back in)

Before we go on: Are there any questions?

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

A Natural Question

When we defined our semantics, we allowed ourselves to pick any
old arrow if− then− elseτ : B× τ × τ → τ

But obviously we want these arrows to have something to do with
each other.

After all, they have the same syntax. That should be reflected
somehow in their semantics.

Intuitively, we should be able to give one interpretation that works
uniformly for all types τ .

Such an interpretation is called Polymorphic, and it’s an extremely
useful abstraction when programming

Following Eilenberg and Mac Lane, before we can rigoriously
interpret polymorphism, we have to talk about functors

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Definition
A functor (really an endofunctor) on C is a map F so that

for each object A of C, FA is an object of C too
each arrow A

f→ B in C lifts to an arrow FA
Ff→ FB in C in a way

compatible with composition

The identity functor I

IA = A for each object A

If = f for each arrow f : A→ B

The constant functor CX

CXA = X for each object A

CX f = 1X for each arrow f : A→ B

The functor ITE

ITE A = X × A× A

ITE f is the map (x , a1, a2) 7→ (x , fa1, fa2) from ITE A→ ITE B

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Next we come to a Natural Transformation between functors

This makes precise the idea that a construction is uniform in all of
its possible inputs

This certainly sounds related to our question about the semantics of
if− then− else. . .

Definition
Given two functors F and G , a Natural Transformation is a collection of
arrows θA : FA→ GA for each object A such that the following square
always commutes:

FA GA

FB GB

θA

Ff Gf

θB

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Let’s see what happens for the intended interpretation of
if− then− else:

(T, x , y) x

fx

(T, fx , fy) fx

if−then−elseA

(T ,f ,f)

If

if−then−elseB

The square commutes! (and it does for F too)

So, in the intended interpretation, if− then− elseA is a natural
transformation from B× τ × τ to I τ !

This naturality makes rigorous the idea that we really have one
definition which works simultaneously for every type τ

Conversely, when thinking about natural transformations, my first
source of intuition is a kind of polymorphic map.

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

There’s one last example I want to share, but to do it, we need to expand
our Toy Language one last time!

Toy Language: Mk. IV

τ ::= B | N | Str | τ1 × τ2 | τ1 → τ2 | List(τ)

e ::= . . . | s | [] : τ | e::e | fold(e1, e2, e3)

We’ve added a type Str of strings

”hello” : Str

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

We’ve also added a type List(τ) which stores a list of elements of
type τ

[] is the empty list

We can add a value x to a preexisting list xs to get the new list
x :: xs

So the list [1, 2, 3] would be represented by 1 :: 2 :: 3 :: [] : List(N)

Finally, given

a function ⊕ : τ × τ → τ

an initial value x∗ : τ

and a list xs = [x1, . . . , xn]

fold(⊕, x∗, xs) = x1 ⊕ (x2 ⊕ (. . . (xn−1 ⊕ (xn ⊕ x∗))))

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

For instance, we can append two lists together by setting

[]@ys = ys

(x :: xs)@ys = x :: (xs@ys)

We can implement this idea with the following code:

xs@ys = λ((xs, ys) : List(τ)× List(τ)).fold(::, ys, xs)

As a (fun?) exercise, you should verify this!

While you’re at it, can you see why τ 7→ List(τ) is a functor?

And why []τ : 1→ List(τ) is actually a natural transformation from
C1(τ) to List(τ)?

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

A Practical Hypothetical

Now, let’s say you want to add logs to your program to make
debugging easier.

You have a bunch of functions of type τ1 → τ2, and you want to
make them keep track of the logfile at the same time.

You realize a good logging format might be Log(τ) = τ × List(Str)

In this way, you keep track of the same output that you used to
return, but you also have a list of strings representing the logs that
you’ve saved so far.

You might write some code like the following to use this idea:

doubleWithLog(x) = (x + x , ”doubled a number”) : N→ Log(N)

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

There’s one major issue, though

We’ve broken compositionality!

If f : τ1 → Log(τ2) and g : τ2 → Log(τ3), then we can’t compose
them since Log(τ2) 6= τ2.

That’s ok, though. We can write our own code to handle
composition for us! This new special composition will keep track of
the logfiles so that we don’t have to think about it.

How should we do this? Well, intuitively. . .

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

τ1 Log(τ2) Log(τ3)

t1 (t2, l1) (t3, l1@l2)

t2 (t3, l2)

τ2 Log(τ3)

f

f

g

g

We can write this formally as

(f >=> g) = λ(t1 : τ1).(πL(g(πL(f (t1)))), πR(f (t))@πR(g(πL(f (t)))))

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

The experienced category theorists are probably hopping up and
down right about now

We have a functor τ 7→ Log(τ)

Equipped with a fancy composition on arrows of the form
τ → Log(τ)

This is exactly the data of Kleisli Composition!

This tells us that our (endo)functor Log is particularly special. It’s
actually a Monad!

Again, this is one of my first sources of intuition for monads –

They tend to act like datastructures where you spruce up an object
with some ∼ bonus structure ∼.

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Real People Care

A lot of software engineers are starting to get interested in Category
Theory

It’s not a niche thing either, if you google “monad tutorial” you’ll see
just how many people are trying to understand this material

If nothing else, hopefully this talk gave you another good response
to “what’s the point in all that abstract nonsense”

I also think this lens is a good one for newcomers to the field
(though I might be biased, since this was my first lens)

I’ll also add that software engineers are interested in a lot of this
machinery – I only scratched the surface.

Chris Grossack(they/them)
Programming for Category Theorists

Introduction The Start of PL Theory Categorical Semantics Polymorphism Monads are like. . .

Thank you!
Questions?

Chris Grossack(they/them)
Programming for Category Theorists

	Introduction
	The Start of PL Theory
	Categorical Semantics
	Polymorphism
	Monads are like…

