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1 What Are The Weil Conjectures?
One of the oldest problems in number theory is that of solving diophantine equations. That
is, given a polynomial f ∈ Z[x1, . . . , xn], when does it have integer solutions? If f does have
integer solutions, natural follow up questions include “how many solutions?”, and “what are
they?”. If instead f does not have integer solutions, a natural follow up is “why not?”, and
one of the oldest answers to this question is a “mod n obstruction”. If f has a solution in Z,
then by reducing everything in sight mod n, we would also get a solution mod n for every
n. Thus, if we can show that f has no solution mod n (which requires only a finite check!),
it cannot have a solution in Z1.

Since the chinese remainder theorem allows us to decompose Z/n into products of Z/pk,
where p is a prime, we restrict attention to those. Of course, by Hensel’s lemma it is
often enough to restrict attention to just Z/p, which has extra nice properties since it is a
field. Thus we are naturally led to the problem of solving polynomials over the prime fields
Fp = Z/p. The fields Fq = Fpk , are created by adding roots of polynomials to Fp, and it is
then reasonable to ask how the number of solutions to f changes as we move between the
Fq for q = p, p2, p3, p4, . . ..

As an example, let’s consider the polynomial f = x2 +y2−1. We can ask a computer algebra
system like Sage to check how many solutions there are over various finite fields:

p1 p2 p3 p4 p5

p = 2 2 4 8 16 32
p = 3 4 8 28 80 244
p = 5 4 24 124 624 3124
p = 7 8 48 344 2400 16808
p = 11 12 120 1332 14640 161052

1After hearing this, it’s natural to ask if this is the only obstruction. That is, if f has a solution mod n for
every n, must it have a solution in Z? It turns out the answer is “no”, but a discussion of this phenomenon
would take us beyond the scope of this article.
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If we write Nq to mean the number of solutions in Fq, then notice Nq ≈ q, with an error of
at most ±1! Writing this as Nq = q + error, the Weil Conjectures give us tight control over
this error term. But (perhaps surprisingly) this error term depends on the geometry of the
complex solutions to the polynomial f viewed as a complex manifold!

In fact, everything we’re about to do will also be true for the simultaneous solution set of a
family of polynomials (called a variety). Still, for conceptual clarity, we will work with an
affine curve for all of our examples.

1.1 A Concrete Computation

Following an argument in [21], we can compute Npk for p an odd prime. Our job is to count
the points {(x, y) ∈ F2

pk
| x2 + y2 − 1 = 0}. Said another way, we’re trying to solve the

equation y2 = 1− x2, and there are 3 cases to consider:

• 1− x2 = 0

• 1− x2 6= 0 is a square

• 1− x2 is not a square

In the first case, y = 0 is the only solution, in the second, both of y = ±
√

1− x2 work, and
of course there are no solutions in the third case.

Inspired by this trichotomy, we consider the character χ : Fpk → {−1, 0, 1} defined by

χ(a) =


0 a = 0

1 a 6= 0 is a square in Fpk
−1 otherwise

Now, conveniently, we see that |{y ∈ Fpk | y2 = a}| = 1 + χ(a), and so we find

|Npk | = |{(x, y) | x2 + y2 = 1}|

=
∑

a1+a2=1

|{x2 = a1}||{y2 = a2}|

=
∑

a1+a2=1

(1 + χ(a1))(1 + χ(a2))

= pk +
∑
a1 6=0,1

χ(a1)χ(1− a1)

where in the last sum we’ve expanded the product and used the fact that χ is a character
to show two of the resulting sums are 0. See [21] for a more detailed explanation of this
calculation.

Notice this agrees with our earlier table of values, where we found |Npk | ≈ pk. In fact, the
cited article goes on to show that
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|Npk | = pk − χ(−1)

which we can simplify further, since we know exaclty when −1 is a square.

χ(−1) =

{
1 p ≡ 1 (mod 4)

(−1)k p ≡ 3 (mod 4)

which finally tells us

|Npk | =

{
pk − 1 p ≡ 1 (mod 4)

pk − (−1)k p ≡ 3 (mod 4)

which perfectly matches our table.

1.2 A Geometric Interlude

When we’re working over a more classical field, like R or C, then a system of polynomial
equations (in n variables) carves out a set in Rn or Cn. For instance, the solutions to our
example x2 + y2 − 1 carves out exactly the unit circle in R2. It turns out that sometimes
an equation will have “points at infinity” that really belong on the curve, and make the
geometric set of solutions much simpler2. We can add these points at infinity by consdering
solutions in the Projective Space PnC, and by working with the homogenized versions of our
polynomials.

The sets we get in this way turn out to be complex manifolds, with the exception of some
singular points. We have access to more geometric tools when our varieties are nonsingular
everywhere, and this happens exactly when the derivative of f never vanishes on the solution
set. In the case of a variety carved out by multiple polynomials f1, . . . , fn, this happens
exactly when the jacobian never vanishes on the solution set. As usual, we call a variety
without singular points smooth.

At this point, it is useful to introduce slightly more notation in order to make things clear
going forwards. If X is a variety defined by integer polynomials and k is some field3 we write
X(k) to mean the set of k-solutions to the polynomials defining X. Then we’re interested
in understanding how |X(Fpk)| changes as we vary k.

For a simple example, let’s say that f is a polynomial in n + 2 variables x0, . . . xn+1. That
means the hypersurface X(C) defined by f will be an n-dimensional variety in Pn+1

C , which
we’ll moreover assume is smooth. Intuitively, we expect an n-dimensional variety to look
roughly like An

C (affine n-space), which is a fancy name for Cn.

Interestingly, in the computation for Nq for f , we found
2Though, again, we don’t have space in this article to detail why
3More generally some ring, but we won’t have need for that generality here
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Nq ≈ q = |AFq | = |Fq|.

Indeed, if we were to work out some more examples, we would see that for an n dimensional
variety, we always have

Nq ≈ qn = |An
Fq | = |Fq|

n.

This might lead us to conjecture that, for a smooth variety X, the number of Fq points of
X should be roughly qdim(X). That is,

|X(Fpk)| ≈ pk dim(X).

Let’s return to the special case of the circle x2 + y2− 1 and try to formalize the relationship
between the numbers |X(Fpk)|. Slightly more generally, we can ask about (nonsingular,
connected) algebraic curves. It seems ambitious to ask for a nice formula, but in many
concrete examples we get the next best thing: a nice generating function4.

Definition 1. Define the (Hasse-Weil) Zeta Function by

Z(X, t) , exp

(∑
n

|X(Fpn)
tn

n

)
‖

1.3 A Concrete Computation (Continued)

Recall from the last concrete computation that for odd primes, (using our new notation),

|X(Fpk)| =

{
pk − 1 p ≡ 1 (mod 4)

pk − (−1)k p ≡ 3 (mod 4)

where X is the circle, defined by x2 + y2 − 1.

Then we can compute for p ≡ 1 (mod 4):

Z(X, t) = exp

(∑
k

(pk − 1)
tk

k

)
= exp (log(1− t)− log(1− pt))

=
1− t
1− pt

4We considered including more tables with explicit computations in this note, but it seemed unnecessary
given the excellent surveys [16] and [21]
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and for p ≡ 3 (mod 4):

Z(X, t) = exp

(∑
k

(pk − (−1)k)
tk

k

)
= exp (log(1 + t)− log(1− pt))

=
1 + t

1− pt

2 No Really, What Are The Weil Conjectures?
In the above example we computed Z(X, t) in the case of the (affine) circleX = {x2+y2 = 1}.
Already we can see lots of structure, such as the rationality of Z, but things become even
nicer when we pass to projective curves X, and thus allow certain “points at infinity” to
count towards our total.

How nice do things become? Well, it’s time to formally state the Weil Conjectures5:

Let X be a smooth, connected, n-dimensional projective variety over Fp. Then

1. (Rationality) Z(X, t) is a rational function given by Z(X, t) = P1P3P5···P2n−1

P0P2···P2n
with

each Pk ∈ Z[t]. Moreover, P0 = 1− t and p2n = 1− pnt

2. (Riemann Hypothesis) Over C, each Pk factors as
∏

j(1− αkjt) with |αkj| = p
k
2

3. (Functional Equation) Z
(
X, 1

pnt

)
= ±pnχ2 tχZ(X, t), where χ is the

Euler characteristic of X

4. (Betti Numbers) If in addition, the polynomials definingX are the mod-p reduction
of polynomials defining a smooth complex manifold X(C), then we have
deg(Pi) = dimQH

i(X(C),Q), where dimQH
i(X(C),Q) is the ith Betti number of

X(C).

2.1 A Quick Aside: What Does This Have To DoWith The Riemann
Hypothesis?

If we think of Z as the ring of functions on the curve specZ, then the classical Riemann Zeta
Function becomes

ζ(s) =
∏

p prime

1

1− p−s

5which have all been proven, despite the historical name
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which we rewrite in terms of the closed points of specZ

ζ(s) =
∏

p∈specZ closed

1

1−N(p)−s

where N(p) = p = |Z/p|.

Now, let’s say X is an (affine6) curve over Fp. Then by analogy, we should consider the
function

ζX(s) ,
∏

p∈Fp[X]

1

1−N(p)−s

where now Fp[X] is the coordinate ring of X, and we use a slightly more general notion of
N(p), since the possible quotients of Fp[X] are more complicated than the possible quotients
of Z. In particular, we say N(p) = pr = |Fpr | whenever r is minimal with Fp[X]/p ⊆ Fpr .

Then the punchline is this:

ζX(s) = Z(X, p−s).

Now, the zeroes of ζX(s) = Z(S, p−s) occur when the numerator is 0, and this happens when
one of the Pk(p−s) = 0 for k odd. But now the “Riemann Hypotehsis” part of the Weil
conjectures tells us when this happens!

Each Pk factors as
∏

j(1−αkjt) with |αkj| = p
k
2 . So if Pk(p−s) = 0, we must have αkjp−s = 1,

and taking norms we see

pσ = p
k
2

where σ is the real part of s.

So then the “Riemann Hypothesis” tells us the zeroes of ζX(s) can only occur when the real
part of s is k

2
. This is clearly analogous to the classical Riemann Hypothesis, which claims

that the nontrivial7 zeroes of ζ(s) only occur when the real part of s is 1
2
.

Similarly, using this new notation, the Functional Equation says that

ζX(s) = ±psχ−
nχ
2 ζX(n− s)

6specZ is not compact in any reasonable sense, and it behaves like an affine curve rather than a projective
one. To that end, we go back to considering affine curves for this part of the notes. Interestingly, some number
theorists believe that the key to solving the Riemann Hypothesis lies in finding a suitable “compactification”
of specZ. See, for instance, the excellent survey [3]

7The presence of the trivial zeroes is related again to the fact that specZ is not compact. Just as we
often consider π−s/2Γ(s/2)ζ(s), which removes the nontrivial zeroes, when we pass from an affine curve to
a projective curve, we multiply ζX by a new rational function which kills some zeroes.
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which is, again, reminiscent of the classical functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s)

2.2 A Remarkable “Proof”

Even though these conjectures are fairly easy to state, as they only have to do with generating
functions counting solutions to polynomial equations, they require remarkably powerful
machinery to prove. Even in the case of curves, the original proof used high dimensional
algebraic geometry before later being simplified to a proof that “only” uses Riemann-Roch.
See [18] for a proof in the case of curves, [16] for a historical account, and the excellent
lecture series [19] for another overview.

This said, there is a jaw-dropping informal argument for why these conjectures might be
true8:

From Galois theory, recall the elements of Fpn are exactly the fixed points of an algebraic
closure Fp under the map φn, where φ : x 7→ xp is the Frobenius Endomorphism.

Then if X is given by the solutions of some family of polynomials with coefficients in Fp, it’s
easy to see φ maps X(Fp) to itself. So then the Fpn points X(Fpn) will be given by exactly
the fixed points of X(Fp) under φn.

Now, let’s imagine that φ : X(Fp)→ X(Fp) was actually a map of smooth C-varieties. Then
we know how to count the fixed points of φn! We can use the Lefschetz Fixed Point Formula:

|X(Fpn)| = |{x ∈ X(Fp) | φnx = x}| =
2n∑
j=0

(−1)jTr
(
(φn)∗;Hj(X,Q)

)
Now plugging this into the definition of Z(X, t), and recalling that exp(Tr(A)) = det(A), we
find

Z(X, t) =

∏
j odd det(1− (φ)∗t;Hj(X,Q))∏
j even det(1− (φ)∗t;Hj(X,Q))

If we define Pj(t) = det(1−(φn)∗t;Hj(X,Q)), then we recover part 1 of the Weil Conjectures!

Part 3 follows from Poincare Duality, and Part 2 follows from a theorem of Serre which says
that, under certain conditions (formally satisfied by φ), the eigenvalues of φ∗ on Hj(X,Q)

have absolute value q
j
2 .

Of course, this proof is meaningless because the cohomology theories for C varieties are
not applicable to varieties over finite fields. Weil himself thought that this proof was

8The reader who is familiar with Sophie Morel’s excellent lecture [8] will doubtless recognize its influence
on this section
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suggestive, but un-formalizable, and was looking for other avenues of proof. Serre, Artin,
and Grothendieck, however, believed that this analogy was too beautiful to be incorrect, and
set out to create a cohomology theory that would work for more general varieties. If they
succeeded, then this informal argument would be able to be pushed through in an entirely
precise way.

After a lot of work, Étale Cohomology was born, and with it came the solution to parts 1,
3, and 4 of the Weil Conjectures. Interestingly, the theory is unable to prove the Riemann
Hypothesis in its current form. There are a set of problems, humorously called the “standard
conjectures” which would give an Étale Cohomological proof of the Riemann Hypothesis for
varieties, but almost all of these have been open for the past 60 years. Instead, Deligne
found a way to sidestep these conjectures, and prove the Riemann Hypothesis directly!

In the second half of this note, we’ll spend some time talking about the machinery that was
eventually used in order to prove the Weil conjectures: That of Topos Theory.

3 Abelian Categories and Cohomology
After seeing the “proof” from the last section, mathematicians embarked on a hunt for a
cohomology theory that was formally similar to classical cohomology and that worked for
varieties over finite fields!

There was a zoo of cohomology theories in the air at the time, all of which seemed to
accomplish similar goals with fairly different initial data. Grothendieck’s famous Tôhoku
paper showed that many of these theories are all particular instances of a more abstract
theory, which has since matured into homological algebra.

Of particular relevance to us is the notion of an AB5 category, a kind of abelian category9

that always has enough injectives. This is useful because if A is an ablian category with
enough injectives and F : A → B is a left exact additive functor, we can associate to F its
Derived Functors RiF as follows. Here A is an object in A:

1. Fix an injective resolution A→ I0 → I1 → · · ·

2. Hit the chain complex I• with F to get a chain complex (FI•, d•) of objects in B

3. Define RiFA to be the cokernel of the unique mono im di−1 � ker di

As a motivating example, consider a topological space X. Then the category of sheaves of
abelian groups on X forms an AB5 category, and thus has enough injectives. If we fix a
sheaf F on X, then we can define the cohomology H i(X,F) as RiΓ, where Γ is the functor
taking a sheaf of abelian groups on X to the “global section”, the abelian group associated
to the open set X. This gives us “classical” sheaf cohomology, from which we can recover the
(even more classical) cohomology of a topological space by considering constant sheaves.

9An abelian category is one that shares many nice properties with the category of abelian groups. For a
more precise definition of this any many other aspects of cohomology we will be glossing over in this note,
see [22].
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Grothendieck knew that sheaf cohomology could be formulated in this way, and moreover
had a good idea of what parts of the sheaf category were needed to prove that it was AB5.
When Serre gave a talk explaining how to get one dimensional cohomology groups H1 by
using “unramified covers” of schemes, Grothendieck saw these generalized covering spaces as
the key to the entire project. The idea was deceptively simple:

Sheaves and Étale spaces are the same thing (up to equivalence). Moreover, the category of
sheaves of abelian groups on X is AB5, thus has a canonical cohomology theory. Now that
Grothendieck has seen these unramified covers, he thinks to build a more general notion of
“sheaf category” on a scheme X whose Étale spaces will be these coverings. Then, if all is
right with the universe, the category of abelian groups of these more general sheaves will
still be AB5! In which case they’ll have a cohomology theory, which must be the right one.

At this point we depart somewhat from the historical development to give a modern view
of these generalized sheaf categories, now called Grothendieck Toposes, but we point the
historically inclined reader to the (excellent) talk [6] by Colin McLarty.

4 Toposes and Cohomology
A topos is many things to many people, which is part of the appeal of the subject. For
us, we will focus exclusively on the features of the theory which are useful for defining
Étale cohomology, though it pains my logician’s heart. We start with sheaf categories on a
topological space, as these will be the objects which we generalize.

If X is a topological space, we write Sh(X) for the category of (Set-valued) sheaves on X.
Again, we find these are equivalent to the Étale spaces on X. That is, topological spaces Y
equipped with a map Y → X so that each point in Y has a neighborhood homeomorphic to
its image in X. In the case X = S1 is the unit circle, there are a number of useful examples,
but here is one nice one:

Notice in particular that this is not a covering space! While it’s true that every covering
space is Étale, we can get by with something slightly weaker. For instance, here every point
“upstairs” has a neighborhood homeomorphic to a neighborhood “downstairs” in S1. However
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every point in S1 need not have a neighborhood whose preimage looks like a disjoint union
of copies of itself. The point below the open endpoint of this half-helix, for instance, will not
have that property.

As a more extreme example of the same phenomenon, consider the following Étale space:

Here the fibre over every point is empty. This is an initial object in Sh(X), but is not a
covering space for the same reason as before. The terminal object in Sh(X) is given by the
sheaf with one point in each fibre. This corresponds to the Étale space X → X by the
identity, and so we can consider the terminal object in Sh(X) as a kind of analogue of X
itself.

A more general way to phrase the notion of a sheaf is as a special kind of functor. This will
be the foundation of the generalizations to come.

If X is a topological space, let O(X) denote the lattice of open sets of X, which we can view
as a poset category. Then a presheaf on X is a (contravariant) functor O(X)op → Set. If
U ⊆ V , then we have a unique arrow U → V in O(X), and so by functoriality any presheaf
F must have a map ρ : FV → FU (called restriction), sending f ∈ FV 7→ f �U∈ FU .

Of course, where there are presheaves, there are sheaves to come, and the distinction is the
following gluing condition:

Say the family {Uα} is an open cover for U , and we’ve selected an element xα from each
FUα. Moreover, say these xα are compatible in the sense that for any α and β, we have
xα � (Uα ∩ Uβ) = xβ � (Uα ∩ Uβ). Then we want to know that we can “glue” the xα together
into a unique x ∈ FU , so that xα = x � Uα.

It turns out the category of sheaves on a topological space (and, in the language of the
coming section, of sheaves on a site) is extremely rich. It has all limits and colimits, is
cartesian closed10, and admits what is called a Subobject Classifier (which plays a central
role in the logical aspects of the theory). Moreover, Sh(X) has an internal Natural Numbers
Object, and these features conspire to let us do most mathematics inside of a sheaf category.

As an example of this richness, let’s see how to formulate the sheaf cohomology functor in this
more categorical language. This definition will immediately generalize to sheaf cohomology
for sheaves on a site, which will give us a cohomology for the Weil conjectures.

10Informally, this means it has “function spaces”. Formally this means for every object A, the functor
−×A : Sh(X)→ Sh(X) admits a right adjoint, written (−)A.

10



4.1 Abelian Groups Internal to a Topos

An Abelian Group Object in a category C is an object A equipped with

• A morhpism e : 1→ A

• A morphism m : A× A→ A

• A morhpism i : A→ A

making the following diagrams commmute:

A× 1 A× A

A× A A

id×e

e×id id

A× A× A A× A

A× A A

id×m

m×id

m

m

A A× A A× A

A× A

A× A A

∆ id×i

∆

i×id

m

me

If we write + for m and − for i, then the first diagram expresses the familiar rules e+ x =
x = x + e for each x ∈ A. The second expresses associativity, and the last expresses
x + (−x) = e = (−x) + x. At this point we have a group object, and it becomes abelian
upon requiring the following commute:

A× A A× A

A

(a,b)7→(b,a)

m m

which expresses a+ b = b+ a.

Moreover, say we have two abelian group objects A and B inside C. Then it’s easy to see
that the arrows f : A→ B in C making the diagram
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A× A B ×B

A B

f×f

mA

f

mB

commute are stable under composition, and act as internal group homomorphisms. After
all, this diagram exactly that f(a1 +A a2) = fa1 +B fa2.

Then there is a subcategory of C whose objects are the abelian group objects and whose
arrows are the group homomorphisms, and we call this category ab(C). The abelian groups
internal to C.

Then one can show that for a topos Sh(X), the category ab(Sh(X)) is an AB5 category!
Moreover, we can prove this fact using facts which will be true of toposes over sites more
generally. See [9] for more.

But now we’re golden! If 1 is the terminal object, then the functor HomSh(X)(1,−) restricts
to an additive, left exact functor ab(Sh(X))→ ab(Set), where, of course, ab(Set) is just the
usual category of abelian groups!

Now the general theory of AB5 categories kicks in, and we get a notion of sheaf cohomology
given by the derived functors of HomSh(X)(1,−)11.

So we know the theory works. All that is left is to give the definition of a Grothendieck
Topology on a category, and show how it generalizes the idea of a topology on a space X.

4.2 A Site for Sore Eyes

Ok, so what parts of a topology did we really use in order to define sheaves? Well, let’s fix
a (small) category C. We want objects in C to act like the open sets of a topological space.

We start with presheaves. These are contravariant functors Cop → Set. Then to define the
sheaf condition we need to know what it means for a family of open sets to cover another
open set.

Grothendieck realized that the important features are these12:

For each objectX of C, we pick a family j(X) of subfunctors of the representable HomC(−, X).
A subfunctor R should be thought of as a collection of objects in C which cover X. So the
family j(X) gives all the possible open covers of X.

First, we require HomC(−, X) to be in j(X). That is, U should cover itself.
11I can’t help but mentioning some examples of this in action when we look at specific toposes, even

though I know we haven’t actually mentioned any non-sheaf toposes in this note. In the case of Sh(X),
we unsurprisingly recover classical sheaf cohomology. In a topos of G-sets for a group G, we get the group
cohomology of G. Moreover, given two toposes E and F with a geometric morphism between them, we can
get spectral sequences relating the cohomology theories of the two categories. Again, see [9] for more.

12For more, see [9] or [2]
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Next, we require these to be pullback stable, in the sense that whenever R is a covering
family for X, if we pullback as indicated in the following diagram, we again get a covering
family for Y :

Rf R

HomC(−, Y ) HomC(−, X)
HomC(−,f)

Intuitively, if we have an open covering {Uα} for U , and we know V ⊆ U , then the family
{Uα ∩ V } should be an open covering for V .

Lastly, if we have a cover {Uα} of U , and we have covers {Uβ
α} for each α, then the entire

collection {Uβ
α} should be a cover for U . Formally, say R is a subfunctor of HomC(−, X),

and S ∈ j(X). Then if for each Y ∈ C and every f ∈ S(Y ) we have Rf ∈ j(Y ), we must
have R ∈ j(X).

With all this in place, we can finally define the category Sh(C, j) to be the full subcategory
of the category of presheaves on C (with natural transformations as arrows) consisting of
those objects with the following property:

A presheaf F is a sheaf when, for every X ∈ C and R ∈ j(X), every natural transformation
αR→ F extends uniquely to HomC(−, X).

R HomC(−, X)

F

α

By the yoneda lemma, we know that natural transformations HomC(−, X) → F are in
bijection with elements of F (X). So then, asking for a natural transformation from R→ F
(where we can write R as a colimit of representables of objects with arrows into X) is like
asking for an element of F (Y ) for each Y in the covering R. Saying that we can extend
such an α to the whole of HomC(−, X) is saying we can glue these pieces together. Which
is exactly the sheaf condition.

4.3 Finally Solving the Problem

Now, let U and X be smooth varieties over an algebraically closed field. We have a notion
of an Étale map f : U → X, which is too technical to cover here13, and we use it to define a
topos as follows.

Let t/X be the category whose objects are etale maps U → X, and whose morhpisms are
the maps from f : U → V making the following diagram commute:

13But see the excellent [14] if you’re interested in more
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U V

X

f

In such a case, the map f is automatically Étale.

Next, we define the coverings. If ϕα : Uα → U is a family of Étale maps and U is Étale over
X, then the family forms a covering exactly when

⋃
ϕα[Uα] = U .

One can check that this forms a Grothendieck topology j on t/X, and thus that the category
Sh(t/X, j) is a topos with properties formally similar to Sh(X) whereX is a topological space.

In particular, we now get a cohomology theory for X which has precisely the properties
needed to prove all of the Weil Conjectures except the Riemann Hypothesis. For a nice
survey of the “Standard Conjectures” and how they relate to a similarly formal proof of the
Riemann Hypothesis, see [11]. If instead you’re intrested in reading about how the problem
was actually solved by Deligne, as well as some details about motives and the Standard
Conjectures, see [15].
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